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Classification and clustering
Classical framework

We consider a collection L of n objects.
Each object is assumed to belong to one of c groups
(classes).
Each object is described by

An attribute vector x ∈ Rp (attribute data), or
Its similarity to all other objects (proximity data).

The class membership of objects may be:
Completely known, described by class labels (supervised
learning);
Completely unknown (unsupervised learning);
Known for some objects, and unknown for others
(semi-supervised learning).
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Classification and clustering
Problems

Classification: predict the class membership of objects
drawn from the same population as L.
Clustering: Determine the class membership of objects in
L.

supervised unsupervised semi-supervised
Classification x x

Clustering x x
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Motivations

In real situations, we may have only partial knowledge of
class labels: we have uncertainty in the data→ partially
supervised learning.
The class membership of objects can usually be predicted
with some remaining uncertainty: the outputs from
classification and clustering algorithms should reflect this
uncertainty.
The theory of belief functions provides a suitable
framework for representing uncertain and imprecise class
information as input and as output of classification and
clustering algorithms.
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Theory of belief functions

Introduced by Dempster (1968) and Shafer (1976), further
developed by Smets (Transferable Belief Model) in the
1980’s and 1990’s. Also known as Dempster-Shafer theory
or Evidence theory.
A formal framework for representing and reasoning from
partial (uncertain, imprecise) information.
Generalizes both Set Theory and Probability Theory:

A belief function may be viewed both as a generalized set
and as a non additive measure.
The theory includes extensions of probabilistic notions
(conditioning, marginalization) and set-theoretic notions
(intersection, union, inclusion, etc.)
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Mass function

Let X be a variable taking values in a finite set Ω (frame of
discernment).
Mass function: m : 2Ω → [0,1] such that∑

A⊆Ω

m(A) = 1.

Every A of Ω such that m(A) > 0 is a focal set of m.
Interpretation: m(A) represents is the probability of
knowing only that X ∈ A, given the available evidence.
m(Ω) is the probability of knowing nothing (ignorance).
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Example

A murder has been committed. There are three suspects:
Ω = {Peter , John,Mary}.
A witness saw the murderer going away, but he only saw
that it was a man.
We know that this witness is drunk 20% of the time.
This piece of evidence can be represented by

m({Peter , John}) = 0.8,

m(Ω) = 0.2

The mass 0.2 is not committed to {Mary}, because the
testimony does not accuse Mary at all!
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Special cases

m may be seen as:
A family of weighted sets {(Ai ,m(Ai )), i = 1, . . . , r}.
A generalized probability distribution (masses are
distributed in 2Ω instead of Ω).

Special cases:
r = 1: categorical mass function (∼ set). We denote by mA
the categorical mass function with focal set A.
|Ai | = 1, i = 1, . . . , r : Bayesian mass function (∼ probability
distribution).
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Belief function

Definition:

bel(A) =
∑
B⊆A
B 6⊆A

m(B) =
∑
∅6=B⊆A

m(B), ∀A ⊆ Ω

Interpretation: degree of belief (support) in hypothesis
"X ∈ A".
bel is superadditive. In particular,

bel(A ∪ B) ≥ bel(A) + bel(B)− bel(A ∩ B).
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Plausibility function

Definition:

pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω

Interpretation: upper bound on the degree of belief that
could be assigned to A after taking into account new
information.
pl is subadditive. In particular,

pl(A ∪ B) ≤ pl(A) + pl(B)− pl(A ∩ B).

bel ≤ pl .
If m is Bayesian, bel = pl (probability measure).
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Example

A ∅ {P} {J} {P, J} {M} {P,M} {J,M} Ω

m(A) 0 0 0 0.8 0 0 0 0.2
bel(A) 0 0 0 0.8 0 0 0 1
pl(A) 0 1 1 1 0.2 1 1 1
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Relations between m, bel et pl

Relations:

bel(A) = pl(Ω)− pl(A), ∀A ⊆ Ω

m(A) =

{∑
∅6=B⊆A(−1)|A|−|B|bel(B), A 6= ∅

1− bel(Ω) A = ∅

m, bel et pl are thus three equivalent representations of a
same piece of information.
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Inclusion relations

Let m1 and m2 be two mass functions on Ω.
In what sense can we say that m1 is more committed
(informative) than m2?
Special case:

Let mA and mB be two categorical mass functions.
mA is more committed than mB iff A ⊆ B.

Generalization to arbitrary mass functions ?
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Weak inclusion

m1 is pl-more committed than m2 (noted m1 vpl m2) if

pl1(A) ≤ pl2(A), ∀A ⊆ Ω.

Properties:
Generalization of inclusion: mA vpl mB ⇔ A ⊆ B.
Greatest element: mΩ such that mΩ(Ω) = 1 (vacuous mass
function).
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Strong inclusion

m1 is a specialization of m2 (noted m1 vs m2) if m1 can be
obtained from m2 by distributing each mass m2(B) to
subsets of B:

m1(A) =
∑
B⊆Ω

S(A,B)m2(B), ∀A ⊆ Ω,

with S(A,B) = proportion of m2(B) transferred to A ⊆ B.
S: specialization matrix.
Properties:

Generalization of inclusion
Greatest element: mΩ.
m1 vs m2 ⇒ m1 vpl m2.
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Example

A ∅ {P} {J} {P, J} {M} {P,M} {J,M} Ω

m2(A) 0 0 0 0.8 0 0 0 0.2
m1(A) 0.1 0.2 0.2 0.3 0 0.1 0.1 0

m1 vs m2
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Least commitment principle

Definition (Least commitment principle)
When several mass functions are compatible with a set of
constraints, the least committed (according to some ordering)
should be chosen.

Example: we only know that pl(A) = 0.
The least committed mass function (according to vpl and
vs) satisfying this constraint is m0 such that m0(A) = 1. It
verifies pl0(A) = 0 and pl0(B) = 1 for all B 6⊆ A.
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Conditioning

Let m represent our state of knowledge about X .
We learn that X ∈ B with B ⊂ Ω. Impact on m?
Let m[B] the updated mass function.
Constraints:

pl[B](B) = 0.
m[B] vs m.

Least commitment principle: least committed solution
according to vpl :

m[B](A) =
∑

{C|C∩B=A}

m(C).
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Example

We have m({Peter , John}) = 0.8, m(Ω) = 0.2.
We learn that the murderer is blond. John and Mary are
blond. B = {John,Mary}.
m({Peter , John})→ {John}, m(Ω)→ {John,Mary}.
New conditional mass function given B.

m[B]({John}) = 0.8

m[B]({John,Mary}) = 0.2.
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Properties

Generalization of intersection: mA[B] = mA∩B.
Generalisation of probabilistic conditioning:

If m(∅) > 0, the normalized mass function m∗ is

m∗(A) =
m(A)

1−m(∅)
.

Normalized conditioning:

pl∗[B](A) =
pl(A ∩ B)

pl(B)

If m is Bayesian, pl = P: same result as probabilistic
conditioning.
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Dempster’s rule
Hypotheses

Let m1 and m2 be two mass functions received from two
reliable sources. How should they be combined?
m1 ∗m2 should be more committed than m1 and m2. We
assume that

m1 ∗m2 = S1 ·m2, m1 ∗m2 = S2 ·m1,

where S1 and S2 specialization matrices.
Hypotheses:

Independence : S1 does not depend on m2, S2 does not
depend on m1.
Generalization of conditioning: m ∗mB = m[B].
Commutativity: m1 ∗m2 = m2 ∗m1.

Solution : Dempster’s rule.
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Dempster’s rule

Definition (Dempster’s rule of combination)

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Ω.

Properties:
Generalization of conditioning: m ∩©mB = m[B].
Commutativity, associativity.
Neutral element: vacuous mΩ such that mΩ(Ω) = 1
(represents total ignorance).

K = (m1 ∩©m2)(∅) ≥ 0: degree of conflict.
Other rules exist (disjunctive rule, cautious rule, etc...).
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Example

We have m1({Peter , John}) = 0.8, m1(Ω) = 0.2.
New piece of evidence: the murderer is blond,
confidence=0.6→ m2({John,Mary}) = 0.6, m2(Ω) = 0.4.

{Peter , John} Ω
0.8 0.2

{John,Mary} {John} {John,Mary}
0.6 0.48 0.12
Ω {Peter , John} Ω

0.4 0.32 0.08
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Pignistic transformation

Assume that our knowledge about X is represented by a
mass function m, and we have to bet on the value of X .
In order to avoid Dutch books (sequences of bets resulting
sure loss), we have to base our decisions on a probability
distribution on Ω.
The pignistic transformation from m to a probability
distribution Betp can be justified axiomatically:

Betp(ω) =
∑

{A⊆Ω|ω∈A}

m∗(A)

|A|
.
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Example

Let m({John}) = 0.48, m({John,Mary}) = 0.12,
m({Peter , John}) = 0.32, m(Ω) = 0.08.
We have

Betp({John}) = 0.48 +
0.12

2
+

0.32
2

+
0.08

3
≈ 0.73,

Betp({Peter}) =
0.32

2
+

0.08
3
≈ 0.19

Betp({Mary}) =
0.12

2
+

0.08
3
≈ 0.09
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Voting k -NN rule

Classical non parametric classification method.
Let Ω denote the set of classes, et L the learning set

L = {(xi , yi), i = 1, . . . ,n}

with xi ∈ Rp and yi ∈ Ω.
Let x ∈ Rp be the feature vector for a new object, and
Φk (x) the set of the k nearest neighbors of x in L
(according to some distance measure).
Decision rule: x is assigned to the majority class in Φk (x).
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Evidential k -NN rule (1/2)

An alternative to the voting k -NN rule based on the theory
of belief functions.
Each xi ∈ Φk (x) is considered as a piece of evidence
regarding the class of x.
The strength of this evidence decreases with the distance
d(x,xi) between x and xi .
It can be represented by a mass function

mi({yi}) = α · ϕ (d(x,xi))

mi(Ω) = 1− α · ϕ (d(x,xi)) .

where α ∈ (0,1) is a constant, and ϕ is a decreasing
function from R+ to [0,1] such that limd→+∞ ϕ(d) = 0.
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Evidential k -NN rule (2/2)

The evidence of the k nearest neighbors of x is pooled
using Dempster’s rule of combination:

m = ∩©xi∈Φk (x)mi .

m encodes the evidence of the learning set regarding the
class of the new object.
Practical choice for ϕ: ϕ(d) = exp(−γd2).
Parameters k , α and γ can be fixed heuristically or
determined from the data using cross-validation.
Decision:

ŷ = arg max
ω∈Ω

Betp(ω).
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Example: Sonar data (UCI database)
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(–) and distance-weighted (-.) k -NN rules.

Thierry Denœux Theory of belief functions 34/ 88



Theory of belief functions
Classification: the evidential k -NN rule

Credal clustering

Principle
Extension to partially supervised data
Evidential neural network

Example: Ionosphere data (UCI database)
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Example: Vehicle data (UCI database)

0 5 10 15 20 25 30 35 40
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

k

er
ro

r 
ra

te

Test error rates as a function of k for the voting (-), evidential (:), fuzzy
(–) and distance-weighted (-.) k -NN rules.

Thierry Denœux Theory of belief functions 36/ 88



Theory of belief functions
Classification: the evidential k -NN rule

Credal clustering

Principle
Extension to partially supervised data
Evidential neural network

Outline

1 Theory of belief functions
Representing evidence
Combining evidence
Making decisions

2 Classification: the evidential k -NN rule
Principle
Extension to partially supervised data
Evidential neural network

3 Credal clustering
Credal partition
EVCLUS
Evidential c-means

Thierry Denœux Theory of belief functions 37/ 88



Theory of belief functions
Classification: the evidential k -NN rule

Credal clustering

Principle
Extension to partially supervised data
Evidential neural network

Partially supervised data

We now consider a learning set of the form

L = {(xi ,mi), i = 1, . . . ,n}

where
xi is the attribute vector for object oi , and
mi is a mass function representing expert knowledge about
the class yi of object oi .

Special cases:
mi ({ωk}) = 1: precise labeling (supervised learning);
mi (A) = 1 for A ⊆ Ω: imprecise (set-valued) labeling;
mi is a Bayesian mass function: probabilistic labeling;
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Extension of the evidential k -NN rule

Each example (xi ,mi) in L is an item of evidence
regarding y , whose reliability decreases with the distance
d(x,xi) between x and xi .
Each mass function mi is transformed (discounted) into a
“weaker” mass function m′i :

m′i (A) = α · ϕ (d(x,xi)) mi(A), ∀A ⊂ Ω.

m′i (Ω) = 1−
∑
A⊂Ω

m′i (A).

The k mass functions are combined using Dempster’s rule:

m = ∩©xi∈Φk (x)m
′
i .
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Example: EEG data

500 EEG signals encoded as 64-D patterns, 50 % positive
(K-complexes), 50 % negative (delta waves), 5 experts.
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Results on EEG data
(Denoeux and Zouhal, 2001)

c = 2 classes, p = 64
data labeled by 5 experts
Consonant mass functions computed from empirical
distribution of expert labels using a probability-possibility
transformation.
n = 200 learning patterns, 300 test patterns

k k -NN w k -NN Ev. k -NN Ev. k -NN
(crisp labels) (uncert. labels)

9 0.30 0.30 0.31 0.27
11 0.29 0.30 0.29 0.26
13 0.31 0.30 0.31 0.26
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Evidential neural network classifier

Implementation in a RBF-like neural network architecture
with r prototypes: p1, . . . ,pr .
Each prototype pi has membership degree uik to each
class ωk with

∑c
k=1 uik = 1

The distance between x and pi induces a mass function:

mi({ωk}) = αiuik exp(−γi‖x− pi‖2) ∀k
mi(Ω) = 1− αi exp(−γi‖x− pi‖2)

m = ∩©r
i=1mi

Initialization: c-means, for instance.
Learning of parameters pi , uik , γi , αi from data by
minimizing an error function
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Neural network architecture
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Figure 2: Connectionist implementation of the evidence-theoretic classi�er. The �xed-weightconnections between layers L2 and L3, as well as inside layer L3, are described in Figure 3.
36
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Results on classical data

Vowel data
c = 11,
p = 10
n = 568

test : 462
ex.

(different
speakers)

Classifier test error rate
Multi-layer perceptron (88 units) 0.49
Radial Basis Function (528 units) 0.47
Gaussian node network (528 units) 0.45
Nearest neighbor 0.44
Linear Discriminant Analysis 0.56
Quadratic Discriminant Analysis 0.53
CART 0.56
BRUTO 0.44
MARS (degree=2) 0.42
Evidential NN (33 prototypes) 0.38
Evidential NN (44 prototypes) 0.37
Evidential NN (55 prototypes) 0.37
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Data fusion example

classifier 

classifier

S1

S2

x

x'

global
decision

C2

C1

fusion

c = 2 classes
x ∈ R5,x′ ∈ R3, Gaussian distributions, conditionally
independent
Learning set: n = 60, validation: nv = 100
test: 5000 vectors
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Results
Test error rates: uncorrupted data

Method x alone x′ alone x and x′

Evidental NN 0.106 0.148 0.061
MLP 0.113 0.142 0.063
RBF 0.133 0.159 0.083
QUAD 0.101 0.141 0.049
BAYES 0.071 0.121 0.028
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Results
Test error rates: x + ε, ε ∼ N (0, σ2I) with rejection
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Credal partition

n objects described by attribute vectors x1, . . . ,xn.
Assumption: each object belongs to one of c classes in
Ω = {ω1, ..., ωc},
Goal: express our beliefs regarding the class membership
of objects, in the form of mass functions m1, . . . ,mn on Ω.
Resulting structure = credal partition, generalizes hard and
fuzzy partitions.
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Example

A m1(A) m2(A) m3(A) m4(A) m5(A)

∅ 0 0 0 0 0
{ω1} 0 0 0 0.2 0
{ω2} 0 1 0 0.4 0
{ω1, ω2} 0.7 0 0 0 0
{ω3} 0 0 0.2 0.4 0
{ω1, ω3} 0 0 0.5 0 0
{ω2, ω3} 0 0 0 0 0

Ω 0.3 0 0.3 0 1
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Special cases

Each mi is a certain mass function:

mi({ωk}) = 1 for some k ∈ {1, . . . , c}

→ crisp partition of Ω.
Each mi is a Bayesian mass function (focal sets are
singletons)→ fuzzy partition of Ω

uik = mi({ωk}), ∀i , k

c∑
k=1

uik = 1.
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Algorithms

EVCLUS (Denoeux and Masson, 2004):
proximity (possibly non metric) data,
multidimensional scaling approach.

Evidential c-means (ECM): (Masson and Denoeux, 2008):
attribute data,
HCM, FCM family (alternate optimization of a cost function).
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Proximity Data

Let P be a collection of n objects {oi}ni=1. The observations
consist in pairwise dissimilarities between objects:

o1 . . . oj . . . on

o1
...

...
...

oi . . . dij . . .
...

...
on
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Learning a Credal Partition from proximity data

Problem: given the dissimilarity matrix D = (dij), how to
build a “reasonable” credal partition ?
Notion of cluster: objects within a cluster are assumed to
be more similar among themselves than with objects from
other clusters.
Compatibility Principle: “The more similar two objects, the
more plausible it is that they belong to the same class”.
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Formalization

Let Sij be the event “objects oi and oj belong to the same
class”.
Let mi and mj be mass functions regarding the class
membership of objects oi and oj .
It can be shown that

pl(Sij) =
∑

A∩B 6=∅

mi(A)mj(B) = 1− Kij

where Kij = degree of conflict between mi and mj .
Problem: find M = (m1, . . . ,mn) such that larger degrees
of conflict Kij correspond to larger dissimilarities dij .
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Cost function

Approach: minimize the discrepancy between the
dissimilarities dij and the degrees of conflict Kij , up to an
affine transformation (similar to Muldimensional Scaling).
Example of stress functions:

I(M,a,b) =
∑
i<j

(aKij + b − dij)
2

dij

Minimization of I with respect to M and a, b using a
gradient-based iterative optimization procedure.
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Reducing the complexity

Learning a credal partition form data may be an ill-posed
problem (O(n2c) parameters, O(n2) dissimilarities)).
Solution:

Reduce the number of focal elements (e.g. {ωk}c
k=1, ∅, and

Ω)
Add constraints to the problem: penalize “uninformative”,
“complex” credal partitions

I′ = I + λ

n∑
i=1

H(mi )

where H=generalized entropy function.
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Experiments: Butterfly example
Data
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Experiments: Butterfly example
Results
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Experiments: Cat cortex dataset
Data

Objects: 65 cortical areas
Dissimilarities: connection strength between the cortical
areas measured on an ordinal scale
(0=self-connection,1=dense connection, 2=intermediate
connection, 3=weak connection, 4=absence of connection)
“True” partition: four functional regions of the cortex
(A=auditory, V=visual, S=somatosensory, F=frontolimbic)
Results:

only 3 misclassified regions out 64
similar to supervised kernel-based classification algorithms,
better than relational fuzzy clustering algorithms.
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Experiments: Cat cortex dataset
Results
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Experiments: Cat cortex dataset
Shepard diagram
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Advantages and drawbacks

Advantages
Applicable to proximity data (not necessarily Euclidean).
Robust against atypical observations (similar or dissimilar
to all other objects).
Usually performs better than relational fuzzy clustering
procedures.

Drawback: computational complexity
One iteration of a gradient-based optimization procedure:
O(f 3n2) where f = number of focal sets (usually c + 2).
Limited to datasets of a few hundred objects and less than
20 classes.
Not possible to use the full expressive power of belief
functions (only {ωk}, ∅ and Ω as focal sets).
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Principle

Problem: generate a credal partition M = (m1, . . . ,mn)
from attribute data X = (x1, ...,xn), xi ∈ Rp.
Generalization of hard and fuzzy c-means algorithms:

Each class represented by a prototype
Alternate optimization of a cost function with respect to the
prototypes and to the credal partition.
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Fuzzy c-means (FCM)

Minimize

JFCM(U,V ) =
n∑

i=1

c∑
k=1

uβikd2
ik

with dik = ||xi − vk || under the constraints
∑

k uik = 1, ∀i .
Alternate optimization algorithm:

vk =

∑n
i=1 uβikxi∑n

i=1 uβik
∀k = 1, . . . , c,

uik =
d−2/(β−1)

ik∑c
`=1 d−2/(β−1)

i`

.
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ECM algorithm
Principle

Each class ωk represented by a prototype vk .
Each non empty set of classes Aj represented by a
prototype v̄j defined as the center of mass of the vk for all
ωk ∈ Aj .
Basic ideas:

For each non empty Aj ∈ Ω, mij = mi (Aj ) should be high if
xi is close to v̄j .
The distance to the empty set is defined as a fixed value δ.
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Optimization problem

Minimize

JECM(M,V ) =
n∑

i=1

∑
{j/Aj 6=∅,Aj⊆Ω}

|Aj |αmβ
ij d

2
ij +

n∑
i=1

δ2mβ
i∅,

subject to ∑
{j/Aj⊆Ω,Aj 6=∅}

mij + mi∅ = 1, ∀i ∈ {1, . . . ,n},

JECM(M,V ) can be iteratively minimized with respect to M
and V using an alternate optimization scheme.
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Butterfly dataset
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Butterfly dataset
Results
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4-class data set
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4-class data set
Hard credal partition
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4-class data set
Lower approximation
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4-class data set
Upper approximation
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Brain data
Problem

Magnetic resonance imaging of pathological brain, 2 sets
of parameters.
Three regions: normal tissue (Norm), ventricals +
cerebrospinal fluid (CSF/V) and pathology (Path).
Image 1 highlights CSF/V (dark), image 2 highlights
pathology (bright).

(a) (b)
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Brain data
Segmentation of image 1

Initial image 
1
 = CSF/V 

2
 = Path  normal

Image 1: 2 classes, coarsening of Ω:
Γ = {γ1 = CSF/V , γ2 = {Path,Normal}}
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Brain data
Segmentation of image 2

Initial image 
1
 = norm  CSF/V 

2
 = Path 

Image 2: 2 classes, coarsening of Ω:
Θ = {θ1 = Path, θ2 = {CSF/V ,Normal}}
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Brain data
Combining the two credal partitions

Two credal partitions: for each pixel, two mass functions
m1 and m2 on two different coarsenings of Ω.
These two mass functions should be combined using
Dempster’s rule to recover the natural partition in three
classes.
m1 and m2 need first to be expressed on a common frame
Ω (common refinement of Γ and Θ).
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Brain data
Refinement of Γ
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Brain data
Refinement of Θ
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Brain data
Final result after combination
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Conclusion

The theory of belief functions extends both set theory and
probability theory→ it allows for the representation of
imprecision and uncertainty.
In classification and clustering, belief functions may be
used to represent partial knowledge of class labels.
Many classification and clustering algorithms can be
adapted to

handle such class labels (partially supervised learning)
generate them from data (credal partition)
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