Theory of Belief functions : Application to Classification and Clustering

Thierry Denœux¹

¹Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599)

COST Action IC0702 Spring School Mieres, May 18, 2009

Classification and clustering Classical framework

- We consider a collection \mathcal{L} of *n* objects.
- Each object is assumed to belong to one of *c* groups (classes).
- Each object is described by
 - An attribute vector $\mathbf{x} \in \mathbb{R}^{p}$ (attribute data), or
 - Its similarity to all other objects (proximity data).
- The class membership of objects may be:
 - Completely known, described by class labels (supervised learning);
 - Completely unknown (unsupervised learning);
 - Known for some objects, and unknown for others (semi-supervised learning).

Classification and clustering Problems

- Classification: predict the class membership of objects drawn from the same population as *L*.
- Clustering: Determine the class membership of objects in \mathcal{L} .

	supervised	unsupervised	semi-supervised
Classification	Х		Х
Clustering		х	Χ
			CIT
		. 4 ⊑	

Motivations

- In real situations, we may have only partial knowledge of class labels: we have uncertainty in the data → partially supervised learning.
- The class membership of objects can usually be predicted with some remaining uncertainty: the outputs from classification and clustering algorithms should reflect this uncertainty.
- The theory of belief functions provides a suitable framework for representing uncertain and imprecise class information as input and as output of classification and clustering algorithms.

Outline

Theory of belief functions

- Representing evidence
- Combining evidence
- Making decisions
- 2 Classification: the evidential k-NN rule
 - Principle
 - Extension to partially supervised data
 - Evidential neural network

3 Credal clustering

- Credal partition
- EVCLUS
- Evidential c-means

Representing evidence Combining evidence Making decisions

Theory of belief functions

- Introduced by Dempster (1968) and Shafer (1976), further developed by Smets (Transferable Belief Model) in the 1980's and 1990's. Also known as Dempster-Shafer theory or Evidence theory.
- A formal framework for representing and reasoning from partial (uncertain, imprecise) information.
- Generalizes both Set Theory and Probability Theory:
 - A belief function may be viewed both as a generalized set and as a non additive measure.
 - The theory includes extensions of probabilistic notions (conditioning, marginalization) and set-theoretic notions (intersection, union, inclusion, etc.)

Representing evidence Combining evidence Making decisions

Outline

Theory of belief functions

- Representing evidence
- Combining evidence
- Making decisions
- Classification: the evidential k-NN rule
 - Principle
 - Extension to partially supervised data
 - Evidential neural network
- 3 Credal clustering
 - Credal partition
 - EVCLUS
 - Evidential c-means

くヨン

Mass function

Let X be a variable taking values in a finite set Ω (frame of discernment).

Representing evidence

• Mass function: $m: 2^{\Omega} \rightarrow [0, 1]$ such that

$$\sum_{A\subseteq\Omega}m(A)=1.$$

- Every A of Ω such that m(A) > 0 is a focal set of m.
- Interpretation: m(A) represents is the probability of knowing only that X ∈ A, given the available evidence.
- *m*(Ω) is the probability of knowing nothing (ignorance).

Representing evidence Combining evidence Making decisions

Example

- A murder has been committed. There are three suspects: $\Omega = \{Peter, John, Mary\}.$
- A witness saw the murderer going away, but he only saw that it was a man.
- We know that this witness is drunk 20% of the time.
- This piece of evidence can be represented by

 $m(\{Peter, John\}) = 0.8,$

$$m(\Omega) = 0.2$$

• The mass 0.2 is not committed to {*Mary*}, because the testimony does not accuse Mary at all!

Special cases

Representing evidence Combining evidence Making decisions

- *m* may be seen as:
 - A family of weighted sets $\{(A_i, m(A_i)), i = 1, \dots, r\}$.
 - A generalized probability distribution (masses are distributed in 2^Ω instead of Ω).
- Special cases:
 - r = 1: categorical mass function (~ set). We denote by m_A the categorical mass function with focal set A.
 - |*A_i*| = 1, *i* = 1,...,*r*: Bayesian mass function (∼ probability distribution).

< < >> < </>

Belief function

Representing evidence Combining evidence Making decisions

• Definition:

$$bel(A) = \sum_{\substack{B \subseteq A \\ B \not\subseteq \overline{A}}} m(B) = \sum_{\emptyset
eq B \subseteq A} m(B), \quad \forall A \subseteq \Omega$$

- Interpretation: degree of belief (support) in hypothesis
 "X ∈ A".
- bel is superadditive. In particular,

$$bel(A \cup B) \ge bel(A) + bel(B) - bel(A \cap B).$$

Representing evidence Combining evidence Making decisions

Plausibility function

Definition:

$$pl(A) = \sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega$$

- Interpretation: upper bound on the degree of belief that could be assigned to A after taking into account new information.
- pl is subadditive. In particular,

$$pl(A \cup B) \leq pl(A) + pl(B) - pl(A \cap B).$$

- bel \leq pl.
- If *m* is Bayesian, bel = pl (probability measure).

Representing evidence Combining evidence Making decisions

Example

A	Ø	{ P }	$\{J\}$	{ <i>P</i> , <i>J</i> }	{ M }	{ <i>P</i> , <i>M</i> }	{ <i>J</i> , <i>M</i> }	Ω
m(A)	0	0	0	0.8	0	0	0	0.2
bel(A)	0	0	0	0.8	0	0	0	1
pl(A)	0	1	1	1	0.2	1	1	1

Representing evidence Combining evidence Making decisions

Relations between m, bel et pl

Relations:

$$bel(A) = pl(\Omega) - pl(\overline{A}), \quad \forall A \subseteq \Omega$$
 $m(A) = \begin{cases} \sum_{\emptyset \neq B \subseteq A} (-1)^{|A| - |B|} bel(B), & A \neq \emptyset \\ 1 - bel(\Omega) & A = \emptyset \end{cases}$

• *m*, *bel* et *pl* are thus three equivalent representations of a same piece of information.

Representing evidence Combining evidence Making decisions

Inclusion relations

- Let m_1 and m_2 be two mass functions on Ω .
- In what sense can we say that m₁ is more committed (informative) than m₂?
- Special case:
 - Let m_A and m_B be two categorical mass functions.
 - m_A is more committed than m_B iff $A \subseteq B$.
- Generalization to arbitrary mass functions ?

Weak inclusion

Representing evidence Combining evidence Making decisions

• m_1 is *pl*-more committed than m_2 (noted $m_1 \sqsubseteq_{pl} m_2$) if

$$pl_1(A) \leq pl_2(A), \quad \forall A \subseteq \Omega.$$

- Properties:
 - Generalization of inclusion: $m_A \sqsubseteq_{pl} m_B \Leftrightarrow A \subseteq B$.
 - Greatest element: m_Ω such that m_Ω(Ω) = 1 (vacuous mass function).

< 🗇

Representing evidence Combining evidence Making decisions

Strong inclusion

*m*₁ is a specialization of *m*₂ (noted *m*₁ ⊑_s *m*₂) if *m*₁ can be obtained from *m*₂ by distributing each mass *m*₂(*B*) to subsets of *B*:

$$m_1(A) = \sum_{B \subseteq \Omega} S(A, B) m_2(B), \quad \forall A \subseteq \Omega,$$

with S(A, B) = proportion of $m_2(B)$ transferred to $A \subseteq B$.

- S: specialization matrix.
- Properties:
 - Generalization of inclusion
 - Greatest element: m_{Ω} .
 - $m_1 \sqsubseteq_s m_2 \Rightarrow m_1 \sqsubseteq_{pl} m_2$.

A B > 4
 B > 4
 B

Example

 $m_1 \sqsubseteq_s m_2$

★ ≥ > < ≥</p>

Representing evidence Combining evidence Making decisions

Least commitment principle

Definition (Least commitment principle)

When several mass functions are compatible with a set of constraints, the *least committed* (according to some ordering) should be chosen.

- Example: we only know that pI(A) = 0.
- The least committed mass function (according to \sqsubseteq_{pl} and \sqsubseteq_s) satisfying this constraint is m_0 such that $m_0(\overline{A}) = 1$. It verifies $pl_0(A) = 0$ and $pl_0(B) = 1$ for all $B \not\subseteq A$.

Representing evidence Combining evidence Making decisions

Outline

Theory of belief functions

- Representing evidence
- Combining evidence
- Making decisions
- Classification: the evidential k-NN rule
 - Principle
 - Extension to partially supervised data
 - Evidential neural network
- 3 Credal clustering
 - Credal partition
 - EVCLUS
 - Evidential c-means

.≣⇒

Conditioning

- Let *m* represent our state of knowledge about *X*.
- We learn that $X \in B$ with $B \subset \Omega$. Impact on *m*?
- Let *m*[*B*] the updated mass function.
- Constraints:

•
$$pl[B](\overline{B}) = 0.$$

 Least commitment principle: least committed solution according to ⊑_{pl}:

$$m[B](A) = \sum_{\{C|C\cap B=A\}} m(C).$$

Combining evidence

Example

- We have $m(\{Peter, John\}) = 0.8, m(\Omega) = 0.2.$
- We learn that the murderer is blond. John and Mary are blond. *B* = {*John*, *Mary*}.

Combining evidence

- $m(\{Peter, John\}) \rightarrow \{John\}, m(\Omega) \rightarrow \{John, Mary\}.$
- New conditional mass function given B.

 $m[B]({John}) = 0.8$

 $m[B]({John, Mary}) = 0.2.$

Properties

- Generalization of intersection: $m_A[B] = m_{A \cap B}$.
- Generalisation of probabilistic conditioning:
 - If $m(\emptyset) > 0$, the normalized mass function m^* is

$$m^*(A)=\frac{m(A)}{1-m(\emptyset)}.$$

Combining evidence

• Normalized conditioning:

$$pl^*[B](A) = rac{pl(A \cap B)}{pl(B)}$$

• If *m* is Bayesian, *pl* = *P*: same result as probabilistic conditioning.

Representing evidence Combining evidence Making decisions

Dempster's rule Hypotheses

- Let *m*₁ and *m*₂ be two mass functions received from two reliable sources. How should they be combined?
- $m_1 * m_2$ should be more committed than m_1 and m_2 . We assume that

$$m_1 * m_2 = S_1 \cdot m_2, \quad m_1 * m_2 = S_2 \cdot m_1,$$

where S_1 and S_2 specialization matrices.

- Hypotheses:
 - Independence : S₁ does not depend on m₂, S₂ does not depend on m₁.
 - Generalization of conditioning: $m * m_B = m[B]$.
 - Commutativity: $m_1 * m_2 = m_2 * m_1$.
- Solution : Dempster's rule.

< < >> < <</>

Representing evidence Combining evidence Making decisions

Dempster's rule

Definition (Dempster's rule of combination)

$$(m_1 \odot m_2)(A) = \sum_{B \cap C = A} m_1(B) m_2(C), \quad \forall A \subseteq \Omega.$$

- Properties:
 - Generalization of conditioning: m_☉m_B = m[B].
 - Commutativity, associativity.
 - Neutral element: vacuous m_Ω such that m_Ω(Ω) = 1 (represents total ignorance).
- $K = (m_1 \odot m_2)(\emptyset) \ge 0$: degree of conflict.
- Other rules exist (disjunctive rule, cautious rule, etc...).

Example

Representing evidence Combining evidence Making decisions

• We have $m_1(\{Peter, John\}) = 0.8, m_1(\Omega) = 0.2.$

 New piece of evidence: the murderer is blond, confidence=0.6 → m₂({John, Mary}) = 0.6, m₂(Ω) = 0.4.

	{ <i>Peter</i> , <i>John</i> }	Ω	
	0.8	0.2	
{John, Mary}	{John}	{John, Mary}	
0.6	0.48	0.12	
Ω	{ <i>Peter</i> , <i>John</i> }	Ω	
0.4	0.32	0.08	

Representing evidence Combining evidence Making decisions

Outline

Theory of belief functions

- Representing evidence
- Combining evidence
- Making decisions
- 2 Classification: the evidential *k*-NN rule
 - Principle
 - Extension to partially supervised data
 - Evidential neural network
- 3 Credal clustering
 - Credal partition
 - EVCLUS
 - Evidential c-means

くヨン

< 🗇

Representing evidence Combining evidence Making decisions

Pignistic transformation

- Assume that our knowledge about X is represented by a mass function *m*, and we have to bet on the value of X.
- In order to avoid Dutch books (sequences of bets resulting sure loss), we have to base our decisions on a probability distribution on Ω.
- The pignistic transformation from *m* to a probability distribution *Betp* can be justified axiomatically:

$$\textit{Betp}(\omega) = \sum_{\{\textit{A} \subseteq \Omega | \omega \in \textit{A}\}} rac{m^*(\textit{A})}{|\textit{A}|}.$$

 Let m({John}) = 0.48, m({John, Mary}) = 0.12, m({Peter, John}) = 0.32, m(Ω) = 0.08.

We have

$$Betp({John}) = 0.48 + \frac{0.12}{2} + \frac{0.32}{2} + \frac{0.08}{3} \approx 0.73,$$
$$Betp({Peter}) = \frac{0.32}{2} + \frac{0.08}{3} \approx 0.19$$
$$Betp({Mary}) = \frac{0.12}{2} + \frac{0.08}{3} \approx 0.09$$

→ < Ξ →</p>

Principle Extension to partially supervised data Evidential neural network

Outline

Theory of belief functions

- Representing evidence
- Combining evidence
- Making decisions
- 2 Classification: the evidential *k*-NN rule
 - Principle
 - Extension to partially supervised data
 - Evidential neural network

3 Credal clustering

- Credal partition
- EVCLUS
- Evidential c-means

Principle Extension to partially supervised data Evidential neural network

Voting k-NN rule

- Classical non parametric classification method.
- Let Ω denote the set of classes, et \mathcal{L} the learning set

$$\mathcal{L} = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, \dots, n\}$$

with $\mathbf{x}_i \in \mathbb{R}^p$ and $y_i \in \Omega$.

- Let **x** ∈ ℝ^ρ be the feature vector for a new object, and Φ_k(**x**) the set of the k nearest neighbors of **x** in L (according to some distance measure).
- Decision rule: **x** is assigned to the majority class in $\Phi_k(\mathbf{x}) \rightarrow \text{utc}$

Principle Extension to partially supervised data Evidential neural network

Evidential k-NN rule (1/2)

- An alternative to the voting *k*-NN rule based on the theory of belief functions.
- Each x_i ∈ Φ_k(x) is considered as a piece of evidence regarding the class of x.
- The strength of this evidence decreases with the distance d(x, x_i) between x and x_i.
- It can be represented by a mass function

$$m_i(\{y_i\}) = \alpha \cdot \varphi \left(d(\mathbf{x}, \mathbf{x}_i) \right)$$

$$m_i(\Omega) = 1 - \alpha \cdot \varphi \left(d(\mathbf{x}, \mathbf{x}_i) \right).$$

where $\alpha \in (0, 1)$ is a constant, and φ is a decreasing function from \mathbb{R}_+ to [0, 1] such that $\lim_{d \to +\infty} \varphi(d) = 0$.

Principle Extension to partially supervised data Evidential neural network

Evidential k-NN rule (2/2)

• The evidence of the *k* nearest neighbors of **x** is pooled using Dempster's rule of combination:

$$m = \bigcap_{\mathbf{x}_i \in \Phi_k(\mathbf{x})} m_i$$

- *m* encodes the evidence of the learning set regarding the class of the new object.
- Practical choice for φ : $\varphi(d) = \exp(-\gamma d^2)$.
- Parameters k, α and γ can be fixed heuristically or determined from the data using cross-validation.
- Decision:

$$\widehat{y} = \arg \max_{\omega \in \Omega} Betp(\omega).$$

Principle Extension to partially supervised data Evidential neural network

Example: Sonar data (UCI database)

Test error rates as a function of k for the voting (-), evidential (:), fuzz (-) and distance-weighted (-.) k-NN rules.

Principle Extension to partially supe

Evidential neural network

Example: lonosphere data (UCI database)

Test error rates as a function of k for the voting (-), evidential (:), fuzz (-) and distance-weighted (-.) k-NN rules.

Principle

Extension to partially supervised data Evidential neural network

Example: Vehicle data (UCI database)

Test error rates as a function of k for the voting (-), evidential (:), fuzz(-) and distance-weighted (-.) k-NN rules.
Principle Extension to partially supervised data Evidential neural network

Outline

Theory of belief functions

- Representing evidence
- Combining evidence
- Making decisions
- 2 Classification: the evidential k-NN rule
 - Principle

Extension to partially supervised data

Evidential neural network

3 Credal clustering

- Credal partition
- EVCLUS
- Evidential c-means

3

Principle Extension to partially supervised data Evidential neural network

Partially supervised data

We now consider a learning set of the form

$$\mathcal{L} = \{ (\mathbf{x}_i, m_i), i = 1, \ldots, n \}$$

where

- **x**_i is the attribute vector for object *o*_i, and
- *m_i* is a mass function representing expert knowledge about the class *y_i* of object *o_i*.

Special cases:

- *m_i*({ω_k}) = 1: precise labeling (supervised learning);
- $m_i(A) = 1$ for $A \subseteq \Omega$: imprecise (set-valued) labeling;
- *m_i* is a Bayesian mass function: probabilistic labeling;

Principle Extension to partially supervised data Evidential neural network

Extension of the evidential k-NN rule

- Each example (x_i, m_i) in L is an item of evidence regarding y, whose reliability decreases with the distance d(x, x_i) between x and x_i.
- Each mass function *m_i* is transformed (discounted) into a "weaker" mass function *m_i*:

$$egin{aligned} m_i'(m{A}) &= lpha \cdot arphi \left(m{d}(\mathbf{x},\mathbf{x}_i)
ight) m_i(m{A}), & orall m{A} \subset \Omega. \ m_i'(\Omega) &= \mathbf{1} - \sum_{m{A} \subset \Omega} m_i'(m{A}). \end{aligned}$$

The k mass functions are combined using Dempster's rule:

$$m = \bigcirc_{\mathbf{x}_i \in \Phi_k(\mathbf{x})} m'_i.$$

Principle Extension to partially supervised data Evidential neural network

Example: EEG data

500 EEG signals encoded as 64-D patterns, 50 % positive (K-complexes), 50 % negative (delta waves), 5 experts.

Principle Extension to partially supervised data Evidential neural network

Results on EEG data (Denoeux and Zouhal, 2001)

- *c* = 2 classes, *p* = 64
- data labeled by 5 experts
- Consonant mass functions computed from empirical distribution of expert labels using a probability-possibility transformation.
- *n* = 200 learning patterns, 300 test patterns

k	<i>k</i> -NN	w <i>k</i> -NN	Ev. <i>k</i> -NN	Ev. <i>k</i> -NN
			(crisp labels)	(uncert. labels)
9	0.30	0.30	0.31	0.27
11	0.29	0.30	0.29	0.26
13	0.31	0.30	0.31	0.26

・ 同 ト ・ ヨ ト ・ ヨ ト

41/88

Principle Extension to partially supervised data Evidential neural network

Outline

Theory of belief functions

- Representing evidence
- Combining evidence
- Making decisions
- 2 Classification: the evidential k-NN rule
 - Principle
 - Extension to partially supervised data
 - Evidential neural network

3 Credal clustering

- Credal partition
- EVCLUS
- Evidential c-means

くヨン

Principle Extension to partially supervised data Evidential neural network

Evidential neural network classifier

- Implementation in a RBF-like neural network architecture with *r* prototypes: p₁,..., p_r.
- Each prototype **p**_i has membership degree u_{ik} to each class ω_k with ∑^c_{k=1} u_{ik} = 1
- The distance between **x** and **p**_i induces a mass function:

$$m_i(\{\omega_k\}) = \alpha_i u_{ik} \exp(-\gamma_i \|\mathbf{x} - \mathbf{p}_i\|^2) \quad \forall k$$

$$m_i(\Omega) = 1 - \alpha_i \exp(-\gamma_i \|\mathbf{x} - \mathbf{p}_i\|^2)$$

$$m = \bigcap_{i=1}^{r} m_i$$

- Initialization: *c*-means, for instance.
- Learning of parameters **p**_i, u_{ik}, γ_i, α_i from data by minimizing an error function

Principle Extension to partially supervised data Evidential neural network

Neural network architecture

Thierry Denœux

44/88

Principle Extension to partially supervised data Evidential neural network

Results on classical data

	Classifier	test error rate
	Multi-layer perceptron (88 units)	0.49
Vowel data	Radial Basis Function (528 units)	0.47
	Gaussian node network (528 units)	0.45
c = 11, n = 10	Nearest neighbor	0.44
p = 10 n = 568	Linear Discriminant Analysis	0.56
test · 462	Quadratic Discriminant Analysis	0.53
	CART	0.56
(different	BRUTO	0.44
(uniereni	MARS (degree=2)	0.42
speakers)	Evidential NN (33 prototypes)	0.38
	Evidential NN (44 prototypes)	0.37
	Evidential NN (55 prototypes)	0.37 🔁
		Cnr

3

프 🖌 🖌 프

Principle Extension to partially supervised data Evidential neural network

Data fusion example

- c = 2 classes
- $\mathbf{x} \in \mathbb{R}^5, \mathbf{x}' \in \mathbb{R}^3$, Gaussian distributions, conditionally independent
- Learning set: n = 60, validation: $n_v = 100$
- test: 5000 vectors

Principle Extension to partially supervised data Evidential neural network

Results Test error rates: uncorrupted data

Method	x alone	\mathbf{x}' alone	\mathbf{x} and \mathbf{x}'
Evidental NN	0.106	0.148	0.061
MLP	0.113	0.142	0.063
RBF	0.133	0.159	0.083
QUAD	0.101	0.141	0.049
BAYES	0.071	0.121	0.028

▶ < Ξ >

A D > A B >

Principle Extension to partially supervised data Evidential neural network

Results Test error rates: $\mathbf{x} + \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$

Thierry Denœux

Theory of belief functions

utc

Principle Extension to partially supervised data Evidential neural network

Results Test error rates: $\mathbf{x} + \epsilon$, $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$ with rejection

ъ

Credal partition EVCLUS Evidential *c*-means

Outline

Theory of belief functions

- Representing evidence
- Combining evidence
- Making decisions
- Classification: the evidential k-NN rule
 - Principle
 - Extension to partially supervised data
 - Evidential neural network

3 Credal clustering

- Credal partition
- EVCLUS
- Evidential c-means

3

Credal partition

Credal partition EVCLUS Evidential *c*-means

- *n* objects described by attribute vectors **x**₁,..., **x**_n.
- Assumption: each object belongs to one of *c* classes in $\Omega = \{\omega_1, ..., \omega_c\},\$
- Goal: express our beliefs regarding the class membership of objects, in the form of mass functions m₁,..., m_n on Ω.
- Resulting structure = credal partition, generalizes hard and fuzzy partitions.

Example

Credal partition EVCLUS Evidential *c*-means

Α	$m_1(A)$	$m_2(A)$	$m_3(A)$	$m_4(A)$	$m_5(A)$
Ø	0	0	0	0	0
$\{\omega_1\}$	0	0	0	0.2	0
$\{\omega_2\}$	0	1	0	0.4	0
$\{\omega_1, \omega_2\}$	0.7	0	0	0	0
$\{\omega_3\}$	0	0	0.2	0.4	0
$\{\omega_1, \omega_3\}$	0	0	0.5	0	0
$\{\omega_2, \omega_3\}$	0	0	0	0	0
Ω	0.3	0	0.3	0	1

Credal partition EVCLUS Evidential *c*-means

• Each *m_i* is a *certain mass function*:

$$m_i(\{\omega_k\}) = 1$$
 for some $k \in \{1, ..., c\}$

 \rightarrow crisp partition of Ω .

Special cases

Each m_i is a Bayesian mass function (focal sets are singletons) → fuzzy partition of Ω

$$u_{ik} = m_i(\{\omega_k\}), \quad \forall i, k$$

$$\sum_{k=1}^{c} u_{ik} = 1.$$

-∢ ≣ →

Algorithms

Credal partition EVCLUS Evidential *c*-means

- EVCLUS (Denoeux and Masson, 2004):
 - proximity (possibly non metric) data,
 - multidimensional scaling approach.
- Evidential *c*-means (ECM): (Masson and Denoeux, 2008):
 - attribute data,
 - HCM, FCM family (alternate optimization of a cost function).

Credal partition EVCLUS Evidential *c*-means

Outline

Theory of belief functions

- Representing evidence
- Combining evidence
- Making decisions
- Classification: the evidential k-NN rule
 - Principle
 - Extension to partially supervised data
 - Evidential neural network

3 Credal clustering

- Credal partition
- EVCLUS
- Evidential c-means

< ∃→

EVCLUS

Proximity Data

Let \mathcal{P} be a collection of *n* objects $\{o_i\}_{i=1}^n$. The observations consist in pairwise dissimilarities between objects:

▶ < ∃ >

Credal partition EVCLUS Evidential *c*-means

Learning a Credal Partition from proximity data

- Problem: given the dissimilarity matrix D = (d_{ij}), how to build a "reasonable" credal partition ?
- Notion of cluster: objects within a cluster are assumed to be more similar among themselves than with objects from other clusters.
- Compatibility Principle: "The more similar two objects, the more plausible it is that they belong to the same class".

Credal partition EVCLUS Evidential *c*-means

Formalization

- Let *S_{ij}* be the event "objects *o_i* and *o_j* belong to the same class".
- Let *m_i* and *m_j* be mass functions regarding the class membership of objects *o_i* and *o_j*.
- It can be shown that

$$pl(S_{ij}) = \sum_{A \cap B
eq \emptyset} m_i(A)m_j(B) = 1 - K_{ij}$$

where K_{ij} = degree of conflict between m_i and m_j .

• Problem: find $M = (m_1, ..., m_n)$ such that larger degrees of conflict K_{ij} correspond to larger dissimilarities d_{ij} .

프 🖌 🛪 프 🕨

< 🗇 🕨

Cost function

• Approach: minimize the discrepancy between the dissimilarities *d_{ij}* and the degrees of conflict *K_{ij}*, up to an affine transformation (similar to Muldimensional Scaling).

EVCLUS

• Example of stress functions:

$$I(M, a, b) = \sum_{i < j} rac{(a \mathcal{K}_{ij} + b - d_{ij})^2}{d_{ij}}$$

• Minimization of *I* with respect to *M* and *a*, *b* using a gradient-based iterative optimization procedure.

Credal partition EVCLUS Evidential *c*-means

Reducing the complexity

- Learning a credal partition form data may be an ill-posed problem (O(n2^c) parameters, O(n²) dissimilarities)).
- Solution:
 - Reduce the number of focal elements (e.g. $\{\omega_k\}_{k=1}^c, \emptyset$, and Ω)
 - Add constraints to the problem: penalize "uninformative", "complex" credal partitions

$$I' = I + \lambda \sum_{i=1}^{n} H(m_i)$$

where *H*=generalized entropy function.

Credal partition EVCLUS Evidential *c*-means

Experiments: Butterfly example

61/88

Credal partition EVCLUS Evidential *c*-means

Experiments: Butterfly example Results

Credal partition EVCLUS Evidential *c*-means

Experiments: Cat cortex dataset

- Objects: 65 cortical areas
- Dissimilarities: connection strength between the cortical areas measured on an ordinal scale (0=self-connection,1=dense connection, 2=intermediate connection, 3=weak connection, 4=absence of connection)
- "True" partition: four functional regions of the cortex (A=auditory, V=visual, S=somatosensory, F=frontolimbic)
- Results:
 - only 3 misclassified regions out 64
 - similar to supervised kernel-based classification algorithms; utc

< < >> < </>

• better than relational fuzzy clustering algorithms.

ヨト イヨト ヨヨ わえの

Credal partition EVCLUS Evidential *c*-means

Experiments: Cat cortex dataset Results

Thierry Denœux

Credal partition EVCLUS Evidential *c*-means

Experiments: Cat cortex dataset

Thierry Denœux

Credal partition EVCLUS Evidential *c*-means

Advantages and drawbacks

- Advantages
 - Applicable to proximity data (not necessarily Euclidean).
 - Robust against atypical observations (similar or dissimilar to all other objects).
 - Usually performs better than relational fuzzy clustering procedures.
- Drawback: computational complexity
 - One iteration of a gradient-based optimization procedure: $O(f^3n^2)$ where f = number of focal sets (usually c + 2).
 - Limited to datasets of a few hundred objects and less than 20 classes.
 - Not possible to use the full expressive power of belief functions (only {ω_k}, Ø and Ω as focal sets).

< 🗗 ▶

< ∃ →

Credal partition EVCLUS Evidential *c*-means

Outline

Theory of belief functions

- Representing evidence
- Combining evidence
- Making decisions
- Classification: the evidential k-NN rule
 - Principle
 - Extension to partially supervised data
 - Evidential neural network

3 Credal clustering

- Credal partition
- EVCLUS
- Evidential c-means

くヨン

Credal partition EVCLUS Evidential *c*-means

Principle

- Problem: generate a credal partition *M* = (*m*₁,..., *m_n*) from attribute data *X* = (**x**₁,..., **x**_n), **x**_i ∈ ℝ^p.
- Generalization of hard and fuzzy *c*-means algorithms:
 - Each class represented by a prototype
 - Alternate optimization of a cost function with respect to the prototypes and to the credal partition.

Credal partition EVCLUS Evidential *c*-means

Fuzzy c-means (FCM)

Minimize

$$J_{ ext{FCM}}(U,V) = \sum_{i=1}^n \sum_{k=1}^c u_{ik}^eta d_{ik}^2$$

with $d_{ik} = ||\mathbf{x}_i - \mathbf{v}_k||$ under the constraints $\sum_k u_{ik} = 1$, $\forall i$.

• Alternate optimization algorithm:

$$\mathbf{v}_{k} = \frac{\sum_{i=1}^{n} u_{ik}^{\beta} \mathbf{x}_{i}}{\sum_{i=1}^{n} u_{ik}^{\beta}} \quad \forall k = 1, \dots, c,$$

$$u_{ik} = rac{d_{ik}^{-2/(eta-1)}}{\sum_{\ell=1}^{c} d_{i\ell}^{-2/(eta-1)}}.$$

Credal partition EVCLUS Evidential *c*-means

ECM algorithm

- Each class ω_k represented by a prototype \mathbf{v}_k .
- Basic ideas:

 - The distance to the empty set is defined as a fixed value δ.

Credal partition EVCLUS Evidential *c*-means

Optimization problem

Minimize

$$J_{\text{ECM}}(M, V) = \sum_{i=1}^{n} \sum_{\{j/A_j \neq \emptyset, A_j \subseteq \Omega\}} |A_j|^{\alpha} m_{ij}^{\beta} d_{ij}^2 + \sum_{i=1}^{n} \delta^2 m_{i\emptyset}^{\beta}$$

subject to

$$\sum_{\{j/A_j\subseteq\Omega,A_j\neq\emptyset\}}m_{ij}+m_{i\emptyset}=1,\quad\forall i\in\{1,\ldots,n\},$$

 J_{ECM}(M, V) can be iteratively minimized with respect to M and V using an alternate optimization scheme.

< 🗇 >

Credal partition EVCLUS Evidential *c*-means

Butterfly dataset

▶ < Ξ
Credal partition EVCLUS Evidential *c*-means

Butterfly dataset Results

▶ < Ξ >

Credal partition EVCLUS Evidential *c*-means

4-class data set

▶ < Ξ >

Credal partition EVCLUS Evidential *c*-means

4-class data set Hard credal partition

Thierry Denœux

Credal partition EVCLUS Evidential *c*-means

4-class data set Lower approximation

Credal partition EVCLUS Evidential *c*-means

4-class data set Upper approximation

Thierry Denœux

77/ 88

Credal partition EVCLUS Evidential *c*-means

Brain data

- Magnetic resonance imaging of pathological brain, 2 sets of parameters.
- Three regions: normal tissue (Norm), ventricals + cerebrospinal fluid (CSF/V) and pathology (Path).
- Image 1 highlights CSF/V (dark), image 2 highlights pathology (bright).

Credal partition EVCLUS Evidential *c*-means

Brain data Segmentation of image 1

Initial image

 $\gamma_1 = \text{CSF/V}$

 $\gamma_2 = Path \cup normal$

▶ < ∃ >

Image 1: 2 classes, coarsening of Ω : $\Gamma = \{\gamma_1 = CSF/V, \gamma_2 = \{Path, Normal\}\}$

Theory of belief functions

Credal partition EVCLUS Evidential *c*-means

Brain data Segmentation of image 2

Initial image

 $\boldsymbol{\theta_1} = \text{norm} \cup \text{CSF/V}$

 $\theta_2 = Path$

Image 2: 2 classes, coarsening of Ω : $\Theta = \{\theta_1 = Path, \theta_2 = \{CSF/V, Normal\}\}$

Theory of belief functions

Credal partition EVCLUS Evidential *c*-means

Brain data Combining the two credal partitions

- Two credal partitions: for each pixel, two mass functions *m*₁ and *m*₂ on two different coarsenings of Ω.
- These two mass functions should be combined using Dempster's rule to recover the natural partition in three classes.
- m_1 and m_2 need first to be expressed on a common frame Ω (common refinement of Γ and Θ).

Credal partition EVCLUS Evidential *c*-means

Brain data Refinement of Г

Theory of belief functions Credal clustering Evidential c-means

Brain data Refinement of Θ

83/88

utc

Credal partition EVCLUS Evidential *c*-means

Brain data Final result after combination

 $\omega_2 = Path$

 $\omega_3 = Normal$

▶ < Ξ >

3

Itc

Conclusion

 The theory of belief functions extends both set theory and probability theory → it allows for the representation of imprecision and uncertainty.

Evidential c-means

- In classification and clustering, belief functions may be used to represent partial knowledge of class labels.
- Many classification and clustering algorithms can be adapted to
 - handle such class labels (partially supervised learning)
 - generate them from data (credal partition)

References | cf. http://www.hds.utc.fr/~tdenoeux

A k-nearest neighbor classification rule based on Dempster-Shafer theory.

IEEE Transactions on Systems, Man and Cybernetics, 25(05):804-813, 1995.

- L. M. Zouhal and T. Denoeux.

An evidence-theoretic k-NN rule with parameter optimization.

IEEE Transactions on Systems, Man and Cybernetics C, 28(2):263-271,1998.

References II cf. http://www.hds.utc.fr/~tdenoeux

A neural network classifier based on Dempster-Shafer theory. *IEEE Transactions on Systems, Man and Cybernetics A*, 30(2), 131-150, 2000.

T. Denoeux and M.-H. Masson.

EVCLUS: Evidential Clustering of Proximity Data.

IEEE Transactions on Systems, Man and Cybernetics B, (34)1, 95-109, 2004.

References III

cf. http://www.hds.utc.fr/~tdenoeux

T. Denœux and P. Smets.

Classification using Belief Functions: the Relationship between the Case-based and Model-based Approaches.

IEEE Transactions on Systems, Man and Cybernetics B, 36(6), 1395-1406, 2006.

M.-H. Masson and T. Denoeux.

ECM: An evidential version of the fuzzy c-means algorithm.

Pattern Recognition, 41(4), 1384-1397, 2008.

E. Côme, L. Oukhellou, T. Denoeux and P. Aknin.

Learning from partially supervised data using mixture models and belief functions.

Pattern Recognition, 42(3), 334-348, 2009.