Information Fusion using Belief Functions New combination rules

Thierry Denœux¹

¹Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599)

ECSQARU 2007, Hammamet (Tunisia), October 31, 2007

★ E → < E →</p>

Philippe Smets (1938-2005)

3

문 🕨 🔺 문

Theory of belief functions

The cautious and bold rules Families of combination rules Conclusions Motivations Basic concepts Canonical conjunctive decomposition

Overview

- Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition
- 2 The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule
- Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications

2

★ E > < E >

Motivations Basic concepts Canonical conjunctive decomposition

Belief functions An uncertainty representation framework

- One of the main frameworks for reasoning with partial (imprecise, uncertain) knowledge, introduced by Dempster (1967) and Shafer (1976)
- Belief functions generalize:
 - probability measures;
 - crisp sets;
 - possibility measures (and fuzzy sets).
- Different semantics for belief functions:
 - Lower-upper probabilities (Dempster's model, Hint model);
 - Random sets;
 - Degrees of belief (Transferable Belief Model TBM).
- The latter model will be adopted in this talk.

・ 回 ト ・ ヨ ト ・ ヨ ト

Motivations Basic concepts Canonical conjunctive decomposition

The Transferable Belief Model

An interpretation of belief function theory

- A subjectivist, non probabilistic interpretation of Belief Function Theory introduced by Smets (1978-2005).
- Main features:
 - Semantics of belief functions as representing weighted opinions of rational agents, irrespective of any underlying probability model;
 - Distinction between the credal and pignistic levels, and use of the pignistic transformation for mapping belief functions to probability measures for decision-making.
 - Our of unnormalized mass functions and interpretation of m(∅) under the open-world assumption;

イロト イポト イヨト イヨト

Motivations Basic concepts Canonical conjunctive decomposition

Information fusion in the TBM framework

- In recent years, there has been may successful applications of the TBM to information fusion problems (sensor fusion, classification, expert opinion pooling, etc.);
- However, there is some lack of flexibility for combining information as compared to other theories such as Possibility Theory:
- Only two main operators:
 - TBM conjunctive rule
 (unnormalized Dempster's rule);
 - TBM disjunctive rule ();
- Main limitations:
 - Undesirable behavior of Dempster's rule in case of high conflict between sources;
 - These operators assume the sources to be distinct.

・ 同 ト ・ ヨ ト ・ ヨ

Motivations Basic concepts Canonical conjunctive decomposition

Problem of conflicting evidence

- Many research works devoted to this problem.
- Several alternatives to Dempster's rule based on various schemes for distributing the mass m(∅) to various propositions (Dubois-Prade rule, Yager's rule, etc).
- Some of these rules may be more robust than Dempster's rule in case of highly conflicting sources, but
 - They lack a clear justification in the TBM;
 - They are not associative (to be addressed later).

・ 同 ト ・ ヨ ト ・ ヨ

Motivations Basic concepts Canonical conjunctive decomposition

The distinctness assumption

- Real-world meaning of this notion difficult to describe
- Main idea: no elementary item of evidence should be counted twice.
 - Example: non overlapping random samples from a population;
 - Counterexample: opinions of different people based on overlapping experiences.
- The TBM conjunctive and disjunctive rules are not appropriate for handling highly overlapping evidence (they are not idempotent).

イロン 不得 とくほ とくほう ほ

Motivations Basic concepts Canonical conjunctive decomposition

Relaxing the distinctness assumption Main approaches

- Possible approaches for combining overlapping items of evidence:
 - Describe the nature of the interaction between sources (Dubois and Prade 1986; Smets 1986);
 - Use a combination rule tolerating redundancy in the combined information.
- Such a rule should be idempotent: m * m = m.
- Idempotent rules exist (averaging; Cattaneo, 2003; Destercke et al, 2007), but they are not associative.

Motivations Basic concepts Canonical conjunctive decomposition

The associativity requirement

- Definition: $(m_1 * m_2) * m_3 = m_1 * (m_2 * m_3)$ for all m_1, m_2, m_3 .
- Why is associativity a desirable property?
- Practical argument:
 - Items evidence can be combined incrementally and regardless of the order in which they are processed (provided commutativity is also verified);
 - Quasi-associativity (existence of an n-ary operator op(m₁,..., m_n) may be sufficient in that respect.
- Conceptual argument: $m_1 * m_2$ should capture all the relevant information contained in m_1 and m_2 ; consequently it should not be necessary to keep m_1 and m_2 in memory for further processing.

Motivations Basic concepts Canonical conjunctive decomposition

Main results to be presented in this talk

- Two new idempotent and associative combination rules, applicable to combine possibly overlapping items of evidence:
 - the cautious conjunctive rule \bigotimes
 - the bold disjunctive rule ⊘
- These rules are derived from the Least commitment principle (an equivalent of the maximum entropy principle for belief functions).
- Each of the four rules ∩, ○, ∧ and occupies a special position in a distinct infinite family of rules with identical algebraic properties.

Motivations Basic concepts Canonical conjunctive decomposition

Overview

- Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition
- 2 The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule
 - Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications

3

(4) E > (4) E > (

Motivations Basic concepts Canonical conjunctive decomposition

Basic belief assignment

Let $\Omega = {\omega_1, \dots, \omega_K}$ be a finite set of answers to a given question Q, called a frame of discernment.

Definition (Basic belief assignment)

A basic belief assignment (BBA) on Ω is a mapping $m: 2^{\Omega} \rightarrow [0, 1]$ such that

$$\sum_{A\subseteq\Omega}m(A)=1$$

Subsets A of Ω such that m(A) > 0 are called focal sets of m.

イロン 不得 とくほ とくほう ほ

Motivations Basic concepts Canonical conjunctive decomposition

Basic belief assignment

- A BBA *m* represents:
 - the state of knowledge of a rational agent *Ag* at a given time *t*, regarding question *Q*;
 - by extension, an item of evidence that induces such a state of knowledge.
- *m*(*A*): part of a unit mass of belief assigned to *A* and to no strict subset.
- $m(\Omega)$: degree of ignorance.
- *m*(Ø): degree of conflict. Under the open-world assumption, degree of belief in the hypothesis that the true answer to question *Q* does not lie in Ω.

Motivations Basic concepts Canonical conjunctive decomposition

Associated functions

Belief and implicability functions

Definition (Belief function)

$$bel(A) = \sum_{\emptyset
eq B \subset A} m(B), \quad \forall A \subseteq \Omega$$

Interpretation of bel(A) : degree of belief in A.

Definition (Implicability function)

 $b(A) = bel(A) + m(\emptyset), \quad \forall A \subseteq \Omega$

イロン 不得 とくほ とくほ とうほ

Motivations Basic concepts Canonical conjunctive decomposition

Associated functions

Belief and implicability functions

Definition (Belief function)

$$bel(A) = \sum_{\emptyset
eq B \subset A} m(B), \quad \forall A \subseteq \Omega$$

Interpretation of bel(A) : degree of belief in A.

Definition (Implicability function)

$$b(A) = bel(A) + m(\emptyset), \quad \forall A \subseteq \Omega$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivations Basic concepts Canonical conjunctive decomposition

Associated functions

Plausibility and commonality

Definition (Plausibility function)

$$pl(A) = \sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega$$

Definition (Commonality function)

$$q(A) = \sum_{B \supset A} m(B), \quad \forall A \subseteq \Omega$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivations Basic concepts Canonical conjunctive decomposition

Associated functions

Plausibility and commonality

Definition (Plausibility function)

$$pl(A) = \sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega$$

Definition (Commonality function)

$$q(A) = \sum_{B \supset A} m(B), \quad \forall A \subseteq \Omega$$

イロト イポト イヨト イヨ

Motivations Basic concepts Canonical conjunctive decomposition

Equivalence of representations

- Functions *bel*, *b*, *pl*, *q*, *m* are in one-to-one correspondance.
- One can move from any representation to another using linear transformations.
- For instance:

$$pl(A) = bel(\Omega) - bel(\overline{A}) = 1 - b(\overline{A}), \quad \forall A \subseteq \Omega,$$

 $m(A) = \sum_{B \supseteq A} (-1)^{|B| - |A|} q(B), \quad \forall A \subseteq \Omega,$
 $m(A) = \sum_{B \subseteq A} (-1)^{|A| - |B|} b(B), \quad \forall A \subseteq \Omega,$

There exists at least two other equivalent representations
 (to be introduced later...)

Motivations Basic concepts Canonical conjunctive decomposition

TBM conjunctive rule

Definition (TBM conjunctive rule)

 $m_1 \bigcirc 2 = m_1 \bigcirc m_2$ defined as:

$$m_{1\bigcirc 2}(A) = \sum_{B\cap C=A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega,$$

Interpretation: $m_1 \odot m_2$ encodes the agent's belief after receiving m_1 and m_2 from two sources S_1 and S_2 , assuming that:

- S₁ and S₂ are distinct (Klawonn and Smets, 1992);
- both S_1 and S_2 are reliable.

Motivations Basic concepts Canonical conjunctive decomposition

TBM conjunctive rule

Definition (TBM conjunctive rule)

 $m_1 \bigcirc 2 = m_1 \bigcirc m_2$ defined as:

$$m_{1\bigcirc 2}(A) = \sum_{B\cap C=A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega,$$

Interpretation: $m_1 \odot m_2$ encodes the agent's belief after receiving m_1 and m_2 from two sources S_1 and S_2 , assuming that:

- S₁ and S₂ are distinct (Klawonn and Smets, 1992);
- both S_1 and S_2 are reliable.

イロト 不得 とくほう 不良 と ほ

Motivations Basic concepts Canonical conjunctive decomposition

TBM conjunctive rule

- Algebraic properties:
 - Commutativity,
 - Associativity
 - Neutral element: vacuous BBA m_{Ω} ($m_{\Omega}(\Omega) = 1$)
 - $\rightarrow (\mathcal{M},\bigcirc)$ is a commutative monoid.

• Expression using the commonality functions:

$$q_1_{\bigcirc 2}(A) = q_1(A) \cdot q_2(A), \quad \forall A \subseteq \Omega.$$

イロト イポト イヨト イヨト

Motivations Basic concepts Canonical conjunctive decomposition

TBM disjunctive rule

Definition (TBM disjunctive rule)

 $m_1 \bigcirc 2 = m_1 \odot m_2$ defined as:

$$m_1_{\bigcirc 2}(A) = \sum_{B \cup C = A} m_1(B) m_2(C), \quad \forall A \subseteq \Omega,$$

Interpretation: $m_1 \odot m_2$ encodes the agent's belief after receiving m_1 and m_2 from two sources S_1 and S_2 , assuming that:

- S₁ and S₂ are distinct (Klawonn and Smets, 1992);
- at least one of S_1 and S_2 is reliable.

Motivations Basic concepts Canonical conjunctive decomposition

TBM disjunctive rule

Definition (TBM disjunctive rule)

 $m_1 \bigcirc 2 = m_1 \odot m_2$ defined as:

$$m_1_{\bigcirc 2}(A) = \sum_{B \cup C = A} m_1(B)m_2(C), \quad \forall A \subseteq \Omega,$$

Interpretation: $m_1 \odot m_2$ encodes the agent's belief after receiving m_1 and m_2 from two sources S_1 and S_2 , assuming that:

- S₁ and S₂ are distinct (Klawonn and Smets, 1992);
- at least one of S_1 and S_2 is reliable.

イロト イポト イヨト イヨト

Motivations Basic concepts Canonical conjunctive decomposition

TBM disjunctive rule

- Algebraic properties:
 - Commutativity,
 - Associativity
 - Neutral element: m_{\emptyset} ($m_{\emptyset}(\emptyset) = 1$)
 - $\rightarrow (\mathcal{M}, \bigcirc)$ is a commutative monoid.

• Expression using the implicability functions:

$$b_1_{\bigcirc 2}(A) = b_1(A) \cdot b_2(A), \quad \forall A \subseteq \Omega.$$

イロト イポト イヨト イヨト

Motivations Basic concepts Canonical conjunctive decomposition

Complementation and De Morgan laws

• Complement of *m*:

$$\overline{m}(A) = m(\overline{A}), \quad \forall A \subseteq \Omega.$$

• De Morgan laws for \bigcirc and \bigcirc :

$$\overline{m_1} \bigcirc \overline{m_2} = \overline{m_1} \bigcirc \overline{m_2},$$
$$\overline{m_1} \oslash \overline{m_2} = \overline{m_1} \oslash \overline{m_2},$$

(\bigcirc and \bigcirc can be interpreted as generalized intersection and union)

★ E > < E >

Motivations Basic concepts Canonical conjunctive decomposition

Overview

Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition
- 2 The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule
- Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications

★ E > < E >

Motivations Basic concepts Canonical conjunctive decomposition

Simple BBA Definition and notation

Definition (Simple BBA)

A BBA is simple if it is of the form

$$m(A) = 1 - w$$

$$m(\Omega) = w,$$

with $w \in [0, 1]$ and $A \subseteq \Omega$. Notation: $m = A^w$.

- Property: $A^{w_1} \odot A^{w_2} = A^{w_1 w_2}$.
- Special cases:
 - Vacuous BBA: A¹ with any A.
 - Categorical BBA: A⁰.

Can any BBA be decomposed as the
 -combination of simple BBAs?

Motivations Basic concepts Canonical conjunctive decomposition

Definition (Simple BBA)

A BBA is simple if it is of the form

$$m(A) = 1 - w$$

$$m(\Omega) = w,$$

with $w \in [0, 1]$ and $A \subseteq \Omega$. Notation: $m = A^w$.

- Property: $A^{w_1} \bigcirc A^{w_2} = A^{w_1 w_2}$.
- Special cases:
 - Vacuous BBA: A¹ with any A.
 - Categorical BBA: A⁰.

Can any BBA be decomposed as the
 -combination of simple BBAs?

Motivations Basic concepts Canonical conjunctive decomposition

Separable BBA

 The concept of separability was introduced by Shafer (1976) in the case of normal BBAs. It can be adapted to subnormal BBAs as follows.

Definition (separability)

A BBA m is separable if it can be decomposed as the normalized combination of simple BBAs.

This decomposition is unique as long as *m* is nondogmatic (*m*(Ω) > 0). It may be called the canonical conjunctive decomposition of *m*.

イロト イポト イヨト イヨト

Motivations Basic concepts Canonical conjunctive decomposition

Separable BBA Conjunctive weight function

• If *m* is separable, then there exists a unique function $w : 2^{\Omega} \mapsto (0, 1]$ such that

$$m = \bigcap_{A \subset \Omega} A^{w(A)},$$

and $w(\Omega) = 1$ by convention.

- Function *w* is called the conjunctive weight function associated to *m*. It is thus yet another representation of *m*.
- Can this representation be extended to any nondogmatic BBA?

《曰》《曰》《曰》《曰》《曰》

Motivations Basic concepts Canonical conjunctive decomposition

Generalized simple BBA

Definition (Smets, 1995)

A generalized simple BBA is a function $\mu : 2^{\Omega} \to \mathbb{R}$ such that

$$\begin{split} \mu(\boldsymbol{A}) &= 1 - \boldsymbol{w}, \\ \mu(\Omega) &= \boldsymbol{w}, \\ \mu(\boldsymbol{B}) &= 0 \quad \forall \boldsymbol{B} \in \mathbf{2}^{\Omega} \setminus \{\boldsymbol{A}, \Omega\}, \end{split}$$

for some $A \neq \Omega$ and $w \in [0, +\infty)$. Notation: $\mu = A^w$.

イロト イポト イヨト イヨト ヨ

Motivations Basic concepts Canonical conjunctive decomposition

Generalized simple BBA

- If $w \leq 1$, μ is a simple BBA.
- If w > 1, μ is not a BBA \rightarrow inverse BBA.
- Interpretation : models a state of knowledge in which we have some diffidence (disbelief) against hypothesis A. We need to acquire some evidence in favor of A to reach a neutral state:

$$A^{w} \bigcirc A^{1/w} = A^{1}.$$

→ Ξ → < Ξ →</p>

Motivations Basic concepts Canonical conjunctive decomposition

Canonical decomposition of a nondogmatic BBA Main result

Theorem (Smets, 1995)

Any nondogmatic BBA can be uniquely decomposed as the not generalized simple BBAs:

$$m=\bigcirc_{A\subset\Omega}A^{w(A)},$$

with $w(A) \in (0, +\infty[$ for all $A \subset \Omega$.

The canonical weight function is now from 2^Ω to (0, +∞[.
 m is separable iff w(A) < 1 for all A.

・ロト ・ 同ト ・ ヨト ・ ヨ

Motivations Basic concepts Canonical conjunctive decomposition

Canonical decomposition of a nondogmatic BBA Main result

Theorem (Smets, 1995)

Any nondogmatic BBA can be uniquely decomposed as the \bigcirc of generalized simple BBAs:

$$m=\bigcirc_{A\subset\Omega}A^{w(A)},$$

with $w(A) \in (0, +\infty[$ for all $A \subset \Omega$.

- The canonical weight function is now from 2^{Ω} to $(0, +\infty[$.
- *m* is separable iff $w(A) \leq 1$ for all *A*.

イロト 不得 とくほう 不良 と ほ

Theory of belief functions Conclusions

Canonical conjunctive decomposition

Conjunctive weight function Computation

Computation of w from q:

$$\ln w(A) = -\sum_{B \supseteq A} (-1)^{|B| - |A|} \ln q(B), \quad \forall A \subset \Omega.$$

Similarity with

$$m(A) = \sum_{B \supseteq A} (-1)^{|B| - |A|} q(B), \quad \forall A \subseteq \Omega$$

• Any procedure for transforming q to m can be used to transform $-\ln q$ to $\ln w$.

→ E > < E</p>

Motivations Basic concepts Canonical conjunctive decomposition

• Let *m* be a consonant BBA, with associated possibility distribution $\pi_k = \pi(\omega_k) = q(\{\omega_k\}), k = 1, ..., K$, such that

$$1 \geq \pi_1 \geq \pi_2 \geq \ldots \geq \pi_K > 0.$$

• The conjunctive weight function associated to *m* is:

$$w(A) = \begin{cases} \pi_1 & A = \emptyset, \\ \frac{\pi_{k+1}}{\pi_k}, & A = \{\omega_1, \dots, \omega_k\}, \ 1 \le k < K, \\ 1, & \text{otherwise.} \end{cases}$$

• *m* is separable.

★ E ► ★ E ►

Motivations Basic concepts Canonical conjunctive decomposition

Examples Quasi-Bayesian BBAs

- Let *m* be a BBA on Ω with focal sets A_1, \ldots, A_n , and Ω , such that $A_i \cap A_j = \emptyset$ for all $i, j \in \{1, \ldots, n\}$.
- We assume that $m(\Omega) + \sum_{k=1}^{n} m(A_k) \le 1$, so that \emptyset may also be a focal set.
- The conjunctive weight function associated to *m* is:

$$w(A) = \begin{cases} \frac{m(\Omega)}{m(A_k) + m(\Omega)}, & A = A_k, \\ m(\Omega) \prod_{k=1}^n \left(1 + \frac{m(A_k)}{m(\Omega)}\right), & A = \emptyset, \\ 1, & \text{otherwise.} \end{cases}$$

• We may have $w(\emptyset) > 1$, so that *m* is not always separable.

イロン 不得 とくほ とくほう ほ

Motivations Basic concepts Canonical conjunctive decomposition

Expression of the TBM conjunctive rule using w

Property

We have

$$m_1 \odot m_2 = \left(\odot_{A \subset \Omega} A^{w_1(A)} \right) \odot \left(\odot_{A \subset \Omega} A^{w_2(A)} \right)$$
$$= \odot_{A \subset \Omega} A^{w_1(A)w_2(A)}.$$

Consequently,

$$w_1 \textcircled{0}_2 = w_1 \cdot w_2.$$

• Similar to $q_{1\bigcirc 2} = q_1 \cdot q_2$.

イロト イポト イヨト イヨト 三

Motivations Basic concepts Canonical conjunctive decomposition

Summary

- Several alternative representations of a BBA, including *bel*,
 b, *pl*, *q* and *w*.
- The TBM conjunctive and disjunctive rules are usually expressed in the *m*-space, but they have simpler representations in other spaces:
 - *q* and *w* spaces for ∩
 - *b* space and another space to be introduced later for ().
- Most attempts to generalize
 have started from its expression in the *m* space.
- Our approach will be based on the *w* space.

イロト イポト イヨト イヨト

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Overview

Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition
- 2 The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule
- Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications

★ E > < E >

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Least commitment principle

Definition (Least commitment principle)

Given two belief functions compatible with a set of constraints, the most appropriate is the least committed (informative).

- Similar to the maximum entropy principle in Probability theory.
- To make this principle operational, it is necessary to define ways of comparing belief functions according to their information content: "m₁ is more committed than m₂".
- Several such informational orderings have been proposed

イロト 不得 とくほ とくほ とうほ

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Informational Comparison of Belief Functions

- *pl*-ordering: $m_1 \sqsubseteq_{pl} m_2$ iff $pl_1(A) \le pl_2(A)$, for all $A \subseteq \Omega$;
- *q*-ordering: $m_1 \sqsubseteq_q m_2$ iff $q_1(A) \le q_2(A)$, for all $A \subseteq \Omega$;
- *s*-ordering: $m_1 \sqsubseteq_s m_2$ iff there exists a stochastic matrix *S* with general term S(A, B), $A, B \in 2^{\Omega}$ verifying $S(A, B) > 0 \Rightarrow A \subseteq B$, $A, B \subseteq \Omega$, such that

$$m_1(A) = \sum_{B \subseteq \Omega} S(A, B) m_2(B), \quad \forall A \subseteq \Omega.$$

d-ordering: $m_1 \sqsubseteq_d m_2$, iff there exists a BBA *m* such that $m_1 = m \boxdot m_2$.

(日)

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Informational Comparison of Belief Functions Properties

•
$$m_1 \sqsubseteq_d m_2 \Rightarrow m_1 \sqsubseteq_s m_2 \Rightarrow \begin{cases} m_1 \sqsubseteq_{pl} m_2 \\ m_1 \sqsubseteq_q m_2, \end{cases}$$

• The vacuous BBA m_{Ω} is the unique greatest element for \sqsubseteq_x with $x \in \{pl, q, s, d\}$:

 $m \sqsubseteq_x m_{\Omega}, \quad \forall m, \forall x \in \{pl, q, s, d\}.$

• Monotonicity of \bigcirc with respect to \sqsubseteq_x , $x \in \{pl, q, s, d\}$:

 $m_1 \sqsubseteq_x m_2 \Rightarrow m_1 \bigcirc m_3 \sqsubseteq_x m_2 \bigcirc m_3, \quad \forall m_1, m_2, m_3$

 $\rightarrow (\mathcal{M}, \bigcirc, \sqsubseteq_x)$ is a partially ordered commutative monoid

《曰》《曰》《曰》《曰》《曰》

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Cautious combination of belief functions Principle (Dubois, Prade and Smets, 2001)

- Two sources provide BBAs *m*₁ and *m*₂, and the sources are both considered to be reliable.
- The agent's state of belief, after receiving these two pieces of information, should be represented by a BBA m_{12} more committed than m_1 , and more committed than m_2 .
- Let S_x(m) be the set of BBAs m' such that m' ⊑_x m, for some x ∈ {pl, q, s, d}.
- We thus have $m_{12} \in S_x(m_1)$ and $m_{12} \in S_x(m_2)$ or, equivalently, $m_{12} \in S_x(m_1) \cap S_x(m_2)$.
- According to the LCP, one should select the *x*-least committed element in S_x(m₁) ∩ S_x(m₂), if it exists.

* 曰 > * 個 > * 문 > * 문 > ' 문 = '

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Cautious combination of belief functions Problem

- The above approach works for special cases.
- Example (Dubois, Prade, Smets 2001): if *m*₁ and *m*₂ are consonant, then the *q*-least committed element in S_q(*m*₁) ∩ S_q(*m*₂) exists and it is unique: it is the consonant BBA with commonality function *q*₁₂ = *q*₁ ∧ *q*₂.
- In general, neither existence nor unicity of a solution can be guaranteed with any of the *x*-orderings, *x* ∈ {*pl*, *q*, *s*, *d*}.
- We need to define a new ordering relation.

・ 同 ト ・ ヨ ト ・ ヨ ト

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

The w-ordering Definition and properties

Definition (w-ordering)

Let m_1 and m_2 be two nondogmatic BBAs. $m_1 \sqsubseteq_w m_2$ iff $w_1(A) \le w_2(A)$, for all $A \subset \Omega$.

• Interpretation: $m_1 = m \odot m_2$ for some separable BBA *m*.

•
$$m_1 \sqsubseteq_w m_2 \Rightarrow m_1 \sqsubseteq_d m_2 \Rightarrow m_1 \sqsubseteq_s m_2 \Rightarrow \begin{cases} m_1 \sqsubseteq_{pl} m_2 \\ m_1 \sqsubseteq_q m_2, \end{cases}$$

- No greatest element, but m_Ω is the unique maximal element: m_Ω ⊑_w m ⇒ m = m_Ω.
- Monotonicity of \bigcirc : $m_1 \sqsubseteq_w m_2 \Rightarrow m_1 \bigcirc m_3 \sqsubseteq_w m_2 \odot m_3, \quad \forall m_1, m_2, m_3$

イロト イポト イヨト イヨト

Informational orderings and the LCF The cautious conjunctive rule The bold disjunctive rule

Overview

Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition

2 The cautious and bold rules

- Informational orderings and the LCP
- The cautious conjunctive rule
- The bold disjunctive rule

3 Families of combination rules

- T-norm-based rules
- Uninorm-based rules
- Applications

2

★ E > < E >

The cautious conjunctive rule

The cautious conjunctive rule Definition

Theorem

Let m_1 and m_2 be two nondogmatic BBAs. The w-least committed element in $S_w(m_1) \cap S_w(m_2)$ exists and is unique. It is defined by the following weight function:

$$w_1 \otimes 2(A) = w_1(A) \wedge w_2(A), \quad \forall A \subset \Omega.$$

$$m_1 \bigotimes m_2 = \bigoplus_{A \subset \Omega} A^{w_1(A) \land w_2(A)}$$

→ Ξ → → Ξ

Informational orderings and the LCF The cautious conjunctive rule The bold disjunctive rule

The cautious conjunctive rule

Theorem

Let m_1 and m_2 be two nondogmatic BBAs. The *w*-least committed element in $S_w(m_1) \cap S_w(m_2)$ exists and is unique. It is defined by the following weight function:

$$w_1 \otimes 2(A) = w_1(A) \wedge w_2(A), \quad \forall A \subset \Omega.$$

Definition (cautious conjunctive rule)

$$m_1 \otimes m_2 = \bigcap_{A \subset \Omega} A^{w_1(A) \wedge w_2(A)}$$

イロト イポト イヨト イヨ

Theory of belief functions The cautious and bold rules Conclusions

The cautious conjunctive rule

The cautious conjunctive rule Computation

Cautious rule computation

<i>m</i> -space		w-space
<i>m</i> 1	\longrightarrow	<i>W</i> ₁
<i>m</i> ₂	\longrightarrow	<i>W</i> ₂
$m_1 \otimes m_2$	←	$w_1 \wedge w_2$

(신문) (문)

Informational orderings and the LCF The cautious conjunctive rule The bold disjunctive rule

The cautious conjunctive rule Properties

Commutativity: $\forall m_1, m_2, m_1 \otimes m_2 = m_2 \otimes m_1$ Associativity: $\forall m_1, m_2, m_3$,

$$m_1 \otimes (m_2 \otimes m_3) = (m_1 \otimes m_2) \otimes m_3$$

No neutral element: $m_{\Omega} \bigotimes m = m$ iff *m* is separable. Monotonicity:

$$m_1 \sqsubseteq_w m_2 \Rightarrow m_1 \bigotimes m_3 \sqsubseteq_w m_2 \bigotimes m_3, \quad \forall m_1, m_2, m_3$$

 $\rightarrow (\mathcal{M}_{nd}, \bigotimes, \sqsubseteq_w)$ is a partially ordered commutative semigroup

イロン 不得 とくほ とくほう ほ

Informational orderings and the LCF The cautious conjunctive rule The bold disjunctive rule

The cautious conjunctive rule Properties related to the combination of non distinct evidence

Idempotence: $\forall m, m \otimes m = m$

Distributivity \bigcirc with respect to \bigcirc :

 $(m_1 \odot m_2) \otimes (m_1 \odot m_3) = m_1 \odot (m_2 \otimes m_3), \forall m_1, m_2, m_3.$

 \rightarrow Item of evidence m_1 is not counted twice!

イロト 不得 とくほ とくほう ほ

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Overview

Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition

2 The cautious and bold rules

- Informational orderings and the LCP
- The cautious conjunctive rule
- The bold disjunctive rule
- Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications

★ Ξ → ★ Ξ →

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Bold disjunctive combination of belief functions Principle

- The agent receives two BBAs m₁ and m₂ from two sources, at least one of which is considered to be reliable.
- The resulting BBA should be less committed than m₁ and m₂.
- Formally, $m_{12} \in \mathcal{G}_x(m_1) \cap \mathcal{G}_x(m_2)$, for some $x \in \{w, d, s, pl, q\}$, with $\mathcal{G}_x(m)$ = set of BBAs less committed than *m* according to \sqsubseteq_x .
- Most commitment principle: we should choose in $\mathcal{G}_x(m_1) \cap \mathcal{G}_x(m_2)$ the most committed BBA according to \sqsubseteq_x (if it exists).

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Bold disjunctive combination of belief functions Search for a suitable informational oredring

- With x = w, this approach leads to a mass function m₁₂ defined by w₁₂ = w₁ ∨ w₂.
- OK with separable BBAs, but w₁ ∨ w₂ does not always correspond to a belief function.
- We need yet another ordering relation...

・ 同 ト ・ ヨ ト ・ ヨ ト

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Canonical disjunctive decomposition

• Let *m* be a subnormal BBA. Its complement \overline{m} is nondogmatic and can be decomposed as

$$\overline{m} = \bigcirc_{A \subset \Omega} A^{\overline{w}(A)}.$$

• Consequently, *m* can be written

$$m = \overline{\bigcirc_{\mathcal{A} \subset \Omega} \mathcal{A}^{\overline{w}(\mathcal{A})}} = \bigcirc_{\mathcal{A} \subset \Omega} \overline{\mathcal{A}^{\overline{w}(\mathcal{A})}}.$$

Each BBA A^{w(A)} is the complement of a generalized simple BBA. Its focal sets are A and Ø. Notation: A_{v(A)}, with v(A) = w(A).

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Canonical disjunctive decomposition

Theorem

Any subnormal BBA m can be uniquely decomposed as the \bigcirc -combination of generalized BBAs $A_{v(A)}$ assigning a mass v(A) > 0 to \emptyset , and a mass 1 - v(A) to A, for all $A \subseteq \Omega$, $A \neq \emptyset$:

$$m = \bigcup_{A \neq \emptyset} A_{\nu(A)}.$$
 (1)

Definition (Disjunctive weight function)

Function $v : 2^{\Omega} \setminus \{\emptyset\} \to (0, +\infty)$ will be referred to as the disjunctive weight function.

イロン 不良 とくほう 不良 と ほ

utc

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Disjunctive weight function Properties

- Duality with w: $v(A) = \overline{w}(\overline{A}), \forall A \neq \emptyset$ (similar to $b(A) = \overline{q}(\overline{A})$).
- Computation from b:

$$\ln \nu(A) = -\sum_{B \subseteq A} (-1)^{|A| - |B|} \ln b(B).$$

Similarity with

$$m(A) = \sum_{B \subseteq A} (-1)^{|A| - |B|} b(B), \quad \forall A \subseteq \Omega.$$

• TBM disjunctive rule:

$$v_1_{1}_{2} = v_1 \cdot v_2.$$

イロト イポト イヨト イヨト

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

The v-ordering Definition and properties

Definition (v-ordering)

Let m_1 and m_2 be two subnormal BBAs. $m_1 \sqsubseteq_v m_2$ iff $v_1(A) \ge v_2(A)$, for all $A \ne \emptyset$.

- Interpretation: $m_2 = m \odot m_1$ for some BBA *m* such that \overline{m} is separable.
- $m_1 \sqsubseteq_v m_2 \Rightarrow m_1 \sqsubseteq_s m_2$.
- No smallest element, but m₀ is the unique minimal element: m ⊑_v m₀ ⇒ m = m₀.
- Monotonicity of \bigcirc : $m_1 \sqsubseteq_v m_2 \Rightarrow m_1 \bigcirc m_3 \sqsubseteq_v m_2 \oslash m_3, \quad \forall m_1, m_2, m_3$

(日) (图) (전) (전) (전) (전)

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

The v-ordering Definition and properties

Definition (v-ordering)

Let m_1 and m_2 be two subnormal BBAs. $m_1 \sqsubseteq_v m_2$ iff $v_1(A) \ge v_2(A)$, for all $A \ne \emptyset$.

- Interpretation: m₂ = m₀m₁ for some BBA m such that m
 is separable.
- $m_1 \sqsubseteq_v m_2 \Rightarrow m_1 \sqsubseteq_s m_2$.
- No smallest element, but m_∅ is the unique minimal element: m ⊑_v m_∅ ⇒ m = m_∅.
- Monotonicity of \bigcirc : $m_1 \sqsubseteq_v m_2 \Rightarrow m_1 \odot m_3 \sqsubseteq_v m_2 \odot m_3, \quad \forall m_1, m_2, m_3$

* 曰 > * 個 > * 문 > * 문 > ' 문 = '

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

The bold disjunctive rule

Theorem

Let m_1 and m_2 be two subnormal BBAs. The v-most committed element in $\mathcal{G}_v(m_1) \cap \mathcal{G}_v(m_2)$ exists and is unique. It is defined by the following disjunctive weight function:

$$v_1 \otimes_2 (A) = v_1(A) \wedge v_2(A), \quad \forall A \in 2^{\Omega} \setminus \emptyset.$$

Definition (Bold disjunctive rule)

$$m_1 \otimes m_2 = \bigcup_{A \neq \emptyset} A_{v_1(A) \wedge v_2(A)}.$$

イロト イポト イヨト イヨト

Theory of belief functions The cautious and bold rules Conclusions

The bold disjunctive rule

The bold disjunctive rule Computation

Bold rule computat	tion			
	<i>m</i> -space		v-space	
	<i>m</i> 1	\longrightarrow	<i>V</i> ₁	
	m_2	\longrightarrow	<i>V</i> ₂	
	$m_1 \oslash m_2$	~	$v_1 \wedge v_2$	

2

(A) (E) (A) (E)

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

The bold disjunctive rule Properties

Commutativity: $\forall m_1, m_2, m_1 \otimes m_2 = m_2 \otimes m_1$ Associativity: $\forall m_1, m_2, m_3, m_1 \otimes (m_2 \otimes m_3) = (m_1 \otimes m_2) \otimes m_3$ No neutral element: $m_{\emptyset} \otimes m = m$ iff \overline{m} is separable. Monotonicity:

 $m_1 \sqsubseteq_v m_2 \Rightarrow m_1 \oslash m_3 \sqsubseteq_v m_2 \oslash m_3, \quad \forall m_1, m_2, m_3.$

 $\rightarrow (\mathcal{M}_{\boldsymbol{\mathcal{S}}}, \bigodot, \sqsubseteq_{\boldsymbol{\mathcal{V}}})$ is a partially ordered commutative semigroup.

* 曰 > * 個 > * 문 > * 문 > ' 문 = '

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

The bold disjunctive rule Properties (continued)

Idempotence: $\forall m, m \otimes m = m;$

Distributivity of \bigcirc with respect to \oslash :

 $(m_1 \bigcirc m_2) \oslash (m_1 \bigcirc m_3) = m_1 \bigcirc (m_2 \oslash m_3), \quad \forall m_1, m_2, m_3.$

 \rightarrow Item of evidence m_1 is not counted twice.

De Morgan laws:

$$\overline{m_1 \otimes m_2} = \overline{m}_1 \otimes \overline{m}_2$$
$$\overline{m_1 \otimes m_2} = \overline{m}_1 \otimes \overline{m}_2$$

* 曰 > * 個 > * 문 > * 문 > ' 문 = '

Informational orderings and the LCP The cautious conjunctive rule The bold disjunctive rule

Generalizing the cautious and bold rules

Four basic rules							
	product	minimum	*				
conjunctive weights w	0	\bigcirc	?				
disjunctive weights v	\bigcirc	\bigotimes	?				
	•						

- Properties of the minimum and the product on (0, +∞]:
 - Commutativity, associativity;
 - Monotonicity: $x \le y \Rightarrow x \land z \le y \land z, \forall x, y, z \in (0, +\infty].$
- Neutral element:
 - $+\infty$ for the minimum \rightarrow t-norm;
 - 1 for the product \rightarrow uninorm.
- Generalization to other t-norms and uninorms?

T-norm-based rules Uninorm-based rules Applications

Overview

- Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition
- 2 The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule
- Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications

2

★ E > < E >

T-norm-based rules Uninorm-based rules Applications

T-norm based conjunctive rules

Proposition

Let * be a positive t-norm on $(0, +\infty]$. Then, for any conjunctive weight functions w_1 and w_2 , the function w_{1*2} defined by :

$$w_{1*2}(A) = w_1(A) * w_2(A), \forall A \subset \Omega,$$

is a conjunctive weight function associated to some nondogmatic BBA m_{1*2} .

Definition (T-norm-based conjunctive rule)

$$m_1 \circledast_w m_2 = \bigcap_{A \subset \Omega} A^{w_1(A) \ast w_2(A)}$$

Utc contribute inclusions contribute notices contribute notices

正明 スポッスポッスラッムロッ

T-norm-based rules Uninorm-based rules Applications

T-norm based conjunctive rules Properties

- Let *M_{nd}* be the set of nondogmatic BBAs, and ⊛_w the conjunctive rule based on t-norm *. Then (*M_{nd}*, ⊛_w, ⊑_w) is a commutative, partially ordered semigroup.
- The minimum is the largest t-norm on (0, +∞].
 Consequently:

Proposition

Among all t-norm based conjunctive operators, the cautious rule is the w-least committed:

$$m_1 \circledast_w m_2 \sqsubseteq_w m_1 \bigotimes m_2, \quad \forall m_1, m_2.$$

utc

T-norm-based rules Uninorm-based rules Applications

T-norm based disjunctive rules Definition and properties

 Let * be a t-norm on (0, +∞]. The disjunctive rule asociated to * is

$$m_1 \circledast_{v} m_2 = \bigcup_{\emptyset \neq A \subseteq \Omega} A_{v_1(A) * v_2(A)}.$$

- (M_s, ⊛_v, ⊑_v) is a commutative, partially ordered semigroup.
- Among all t-norm based disjunctive operators, the bold rule is the v-most committed.
- De Morgan laws:

$$\overline{m_1 \circledast_w m_2} = \overline{m_1} \circledast_v \overline{m_2}$$

$$\overline{m_1 \circledast_v m_2} = \overline{m_1} \circledast_w \overline{m_2}$$

$$\overline{m_1 \circledast_v m_2} = \overline{m_1} \circledast_w \overline{m_2}$$

$$\overline{n_1 \circledast_v m_2} = \overline{m_1} \circledast_w \overline{m_2}$$

$$\overline{n_1 \circledast_v m_2} = \overline{m_1} \circledast_w \overline{m_2}$$

$$\overline{n_1 \circledast_v m_2} = \overline{m_1} \circledast_w \overline{m_2}$$

T-norm-based rules Uninorm-based rules Applications

Construction of *t*-norms on $(0, +\infty]$

Proposition

Let \top be a positive t-norm on [0, 1], and let \bot be a t-conorm on [0, 1]. Then the operator $*_{\top, \bot}$ defined by

$$x *_{\top,\perp} y = \begin{cases} x \top y & \text{if } x \lor y \le 1, \\ \left(\frac{1}{x} \bot \frac{1}{y}\right)^{-1} & \text{if } x \land y > 1, \\ x \land y & \text{otherwise,} \end{cases}$$

for all $x, y \in (0, +\infty]$ is a t-norm on $(0, +\infty]$.

 \rightarrow For each pair (\top, \bot) , there is a pair of dual conjunctive and disjunctive rules generalizing the cautious and bold rules, respectively.

イロン 不得 とくほ とくほう ほ

T-norm-based rules Uninorm-based rules Applications

Overview

- Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition
- 2 The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule
- Families of combination rules
 - T-norm-based rules
 - Uninorm-based rules
 - Applications

2

★ E > < E >

T-norm-based rules Uninorm-based rules Applications

Uninorm-based conjunctive rules

Proposition

Let \circ be a uninorm on $(0, +\infty]$ with 1 as neutral element, such that $x \circ y \le xy$ for all $x, y \in (0, +\infty]$. Then, for any w functions w_1 and w_2 , the function $w_{1\circ 2}$ defined by :

$$w_{1\circ 2}(A) = w_1(A) \circ w_2(A), \forall A \subset \Omega,$$

is a w function associated to some nondogmatic BBA $m_{1\circ 2}$.

Definition (Uninorm-based conjunctive rule)

Let \circ be a uninorm on $(0, +\infty]$ verifying the above condition.

$$m_1 \odot_w m_2 = \bigcap_{A \subset \Omega} A^{w_1(A) \circ w_2(A)}.$$

DE LA RECHERCH

T-norm-based rules Uninorm-based rules Applications

Uninorm-based conjunctive rules Properties

Proposition

Let \mathcal{M}_{nd} be the set of nondogmatic BBAs, and \bigotimes_{w} the conjunctive rule based on uninorm \circ with one as neutral element, and verifying $x \circ y \leq xy$ for all $x, y \in (0, +\infty]$. Then $(\mathcal{M}_{nd}, \bigotimes_{w}, \sqsubseteq_{w})$ is a commutative, partially ordered monoid, with the vacuous BBA as neutral element.

Question: Can we relax the condition x ∘ y ≤ xy for all x, y ∈ (0, +∞], and get an operator ⊚_w that is not more committed than

イロト イポト イヨト イヨト

T-norm-based rules Uninorm-based rules Applications

Uninorm-based conjunctive rules Properties (continued)

Theorem (Pichon and Denœux, 2007)

Let \circ be a binary operator on $(0, +\infty]$ such that

- $x \circ 1 = 1 \circ x = x$ for all x and
- *x* ∘ *y* > *xy* for some *x*, *y* > 0.

Then, there exists two BBAs m_1 and m_2 such that $w_1 \circ w_2$ is not a valid w function.

Corollary

Consequence: among all uninorm-norm based conjunctive operators, the TBM conjunctive rule is the w-least committed:

 $m_1 \otimes_w m_2 \sqsubseteq_w m_1 \bigcirc m_2, \quad \forall m_1, m_2, \forall \otimes_w.$

utc

CENTRE NATIONAL DE LA RECHERCHE SCIENTIPIQUE

T-norm-based rules Uninorm-based rules Applications

Uninorm-based disjunctive rules Definition and properties

Let ∘ be a uninorm on (0, +∞] with 1 as neutral element, such that x ∘ y ≤ xy for all x, y ∈ (0, +∞]. The disjunctive rule associated to ∘ is defined as:

$$m_1 \odot_{v} m_2 = \bigcup_{A \subset \Omega} A_{v_1(A) \circ v_2(A)}.$$

- (M_s, ⊚_v, ⊑_v) is a commutative, partially ordered monoid, with m₀ as neutral element.
- Among all uninorm-norm based disjunctive operators, the TBM disjunctive rule is the v-most committed.
- De Morgan laws:

$$\overline{m_1 \odot_W m_2} = \overline{m_1} \odot_V \overline{m_2}$$

$$\overline{m_1 \odot_V m_2} = \overline{m_1} \odot_W \overline{m_2}$$

T-norm-based rules Uninorm-based rules Applications

Construction of uninorms on $(0, +\infty]$

Proposition

Let \top be a positive t-norm on [0, 1] verifying $x \top y \le xy$ for all $x, y \in [0, 1]$, and let \top' be a t-norm on [0, 1] verifying $x \top y \ge xy$ for all $x, y \in [0, 1]$. Then the operator defined by

$$x \circ_{\top,\top'} y = \begin{cases} x \top y & \text{if } x \lor y \le 1, \\ \left(\frac{1}{x} \top' \frac{1}{y}\right)^{-1} & \text{if } x \land y \ge 1, \\ x \land y & \text{otherwise,} \end{cases}$$

for all $x, y \in (0, +\infty]$ is a uninorm on $(0, +\infty]$ verifying $x \circ_{\top, \top'} y \le xy$ for all x, y > 0.

→ For each pair (\top, \top') , there is a pair of dual conjunctive and disjunctive uninorm-based rules.

utc

T-norm-based rules Uninorm-based rules Applications

Coincidence for separable BBAs

- Let \top and \top' be t-norms on [0, 1], and \bot be a t-conorm on [0, 1].
- One can build:
 - a t-norm $*_{\top,\perp}$ on $(0,+\infty]$;
 - a uninorm $\circ_{\top,\top'}$ on $(0,+\infty]$.
- The corresponding t-norm and uninorm based conjunctive rules ⊛_w and ⊚_w coincide on separable BBAs.
- Consequence: to define a rule for combining separable BBAs, one only needs to define a t-norm ⊤.

▲御▶ ▲理▶ ▲理≯ 理

T-norm-based rules Uninorm-based rules Applications

Summary

- We now have four infinite families of rules:
 - conjunctive and disjunctive t-norm-based rules;
 - conjunctive and disjunctive uninorm-based rules.
- In each of these families, one rule plays a special role and is well justified by the LCP:
 - the
 A and
 rules are the w-least-committed conjunctive rules in the t-norm-based and uninorm-based families, respectively;
 - the ⊘ and rules are the v-most committed disjunctive rules in the t-norm-based and uninorm-based families, respectively.
- The justification of the other rules is less clear but...
- Can they be useful in practice?

・ 同 ト ・ ヨ ト ・ ヨ ト

T-norm-based rules Uninorm-based rules Applications

Overview

- Theory of belief functions
 - Motivations
 - Basic concepts
 - Canonical conjunctive decomposition
- 2 The cautious and bold rules
 - Informational orderings and the LCP
 - The cautious conjunctive rule
 - The bold disjunctive rule

Families of combination rules

- T-norm-based rules
- Uninorm-based rules
- Applications

★ E > < E >

T-norm-based rules Uninorm-based rules Applications

Application to classification

- Let us consider a classification problem where objects are described by feature vectors **x** ∈ ℝ^ρ and belong to one of *K* groups in Ω = {ω₁,..., ω_K}.
- Learning set L = {(x₁, z₁),..., (x_n, z_n)}, where z_i ∈ Ω denotes the class of object *i*.
- Problem: predict the class of a new object described by feature vector **x**.
- Application of new combination rules to:
 - combine neighborhood information in the evidential *k* nearest neighbor rule;
 - combine outputs from classifiers built from different features.

* 曰 > * 個 > * 문 > * 문 > ' 문 = '

T-norm-based rules Uninorm-based rules Applications

Example 1: evidential *k*-NN rule

 The evidence of example *i* is represented by a simple BBA *m_i* on Ω defined by

$$m_i = \{z_i\}^{\varphi(d_i)}$$

where d_i is the distance between **x** and **x**_{*i*}, and φ is an increasing function from \mathbb{R}^+ to [0, 1].

• The evidence of the *k* nearest neighbors of **x** in *L* is pooled using the TBM conjunctive rule:

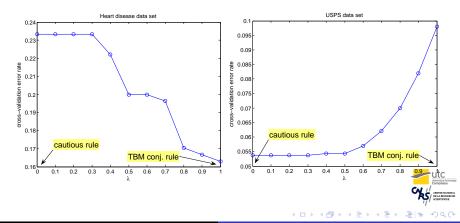
$$m = \bigcap_{i \in N_k(\mathbf{x})} \{z_i\}^{\varphi(d_i)}.$$

Generalization: replace or by another conjunctive operator

 Image: weight of the second sec

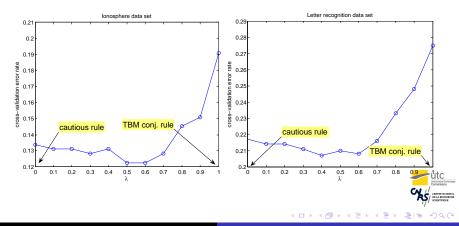
T-norm-based rules Uninorm-based rules Applications

Results Heart disease and USPS datasets



T-norm-based rules Uninorm-based rules Applications

Results lonosphere and Letter recognition datasets



T-norm-based rules Uninorm-based rules Applications

Example 2: classifier fusion Principle

- One separate classifier for each feature x_i.
- Classifier using input feature x_i produces a BBA m_i.
- Method:
 - logistic regression;
 - posterior probabilities tranformed into consonant BBAs using the isopignistic transformation.
- Classifier outputs combined using t-norm based conjunctive operators.
- T-norm on [0, 1] taken in Frank's family.

・ 同 ト ・ ヨ ト ・ ヨ ト

T-norm-based rules Uninorm-based rules Applications

Results



Summary Four basic rules

- Two new dual commutative, associative et idempotent rules:
 - cautious conjunctive rule $w_1 \otimes_2 = w_1 \wedge w_2$;
 - bold disjunctive rule $v_1 \otimes_2 = v_1 \wedge v_2$.
- Both rules are derived from the Least commitment principle, for some (different) informational ordering relations.
- With the TBM conjunctive and disjunctive rules, we now have four basic rules:

sources	all reliable	at least one reliable	
distinct	0	\bigcirc	utc Université de Technologie Commaléane
non distinct	\bigcirc	\bigcirc	CENTRE MATIONAL DE LA RECIERCIRE SCENTIPOLE

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- - the

 ¬ rule is based on a uninorm on (0, +∞] and has a
 neutral element (the vacuous BBA).
- Similarly, the ⊘ and rules are based, respectively, on a t-norm and a uninorm; has a neutral element, whereas ⊘ has not.

(金) (金) (金) (金)

Summary T-norm and uninorm-based rules

- To each of the four basic rules corresponds one infinite family of combination rules:
 - the t-norm-based conjunctive and disjunctive families;
 - the uninorm-based conjunctive and disjunctive families.

 \rightarrow at least as much flexibility and diversity as in Possibility theory!

- Each of the four basic rules occupies a special position in its family:
 - The (\u00d3) and (\u00d3) rules are the least committed elements;
 - The \odot and \bigcirc rules are the most committed elements.
- Preliminary experiments suggest that the use of general t-norm and uninorm-based rules may improve the performances of information fusion systems.

ㅁ▶ ◀륨▶ ◀글▶ ◀글

References

Ph. Smets.

The canonical decomposition of a weighted belief. In *Int. Joint Conf. on Artificial Intelligence*, pages 1896–1901, San Mateo, Ca, 1995. Morgan Kaufman.

T. Denœux.

Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence. *Artificial Intelligence (In press)*, 2007.

