# Information Fusion using Belief Functions <br> New combination rules 

## Thierry Denœux ${ }^{1}$

${ }^{1}$ Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599)

ECSQARU 2007, Hammamet (Tunisia), October 31, 2007

## Philippe Smets (1938-2005)



## Overview

(1) Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition
(b) The cautious and bold rules
- Informational orderings and the LCP
- The cautious conjunctive rule
- The bold disjunctive rule
(3) Families of combination rules
- T-norm-based rules
- Uninorm-based rules
- Applications
T. Denœux


## Belief functions

An uncertainty representation framework

- One of the main frameworks for reasoning with partial (imprecise, uncertain) knowledge, introduced by Dempster (1967) and Shafer (1976)
- Belief functions generalize:
- probability measures;
- crisp sets;
- possibility measures (and fuzzy sets).
- Different semantics for belief functions:
- Lower-upper probabilities (Dempster's model, Hint model);
- Random sets;
- Degrees of belief (Transferable Belief Model - TBM).
- The latter model will be adopted in this talk.


## The Transferable Belief Model

An interpretation of belief function theory

- A subjectivist, non probabilistic interpretation of Belief Function Theory introduced by Smets (1978-2005).
- Main features:
(1) Semantics of belief functions as representing weighted opinions of rational agents, irrespective of any underlying probability model;
(2) Distinction between the credal and pignistic levels, and use of the pignistic transformation for mapping belief functions to probability measures for decision-making.
(3) Use of unnormalized mass functions and interpretation of $m(\emptyset)$ under the open-world assumption;


## Information fusion in the TBM framework

- In recent years, there has been may successful applications of the TBM to information fusion problems (sensor fusion, classification, expert opinion pooling, etc.);
- However, there is some lack of flexibility for combining information as compared to other theories such as
Possibility Theory:
- Only two main operators:
- TBM conjunctive rule $®$ (unnormalized Dempster's rule);
- TBM disjunctive rule (1);
- Main limitations:
- Undesirable behavior of Dempster's rule in case of high conflict between sources;
- These operators assume the sources to be distinct.


## Problem of conflicting evidence

- Many research works devoted to this problem.
- Several alternatives to Dempster's rule based on various schemes for distributing the mass $m(\emptyset)$ to various propositions (Dubois-Prade rule, Yager's rule, etc).
- Some of these rules may be more robust than Dempster's rule in case of highly conflicting sources, but
- They lack a clear justification in the TBM;
- They are not associative (to be addressed later).


## The distinctness assumption Definition

- Real-world meaning of this notion difficult to describe
- Main idea: no elementary item of evidence should be counted twice.
- Example: non overlapping random samples from a population;
- Counterexample: opinions of different people based on overlapping experiences.
- The TBM conjunctive and disjunctive rules are not appropriate for handling highly overlapping evidence (they are not idempotent).


## Relaxing the distinctness assumption

Main approaches

- Possible approaches for combining overlapping items of evidence:
- Describe the nature of the interaction between sources (Dubois and Prade 1986; Smets 1986);
- Use a combination rule tolerating redundancy in the combined information.
- Such a rule should be idempotent: $m * m=m$.
- Idempotent rules exist (averaging; Cattaneo, 2003; Destercke et al, 2007), but they are not associative.


## The associativity requirement

- Definition: $\left(m_{1} * m_{2}\right) * m_{3}=m_{1} *\left(m_{2} * m_{3}\right)$ for all $m_{1}, m_{2}$, $m_{3}$.
- Why is associativity a desirable property?
- Practical argument:
- Items evidence can be combined incrementally and regardless of the order in which they are processed (provided commutativity is also verified);
- Quasi-associativity (existence of an n -ary operator $o p\left(m_{1}, \ldots, m_{n}\right)$ may be sufficient in that respect.
- Conceptual argument: $m_{1} * m_{2}$ should capture all the relevant information contained in $m_{1}$ and $m_{2}$; consequently it should not be necessary to keep $m_{1}$ and $m_{2}$ in memory for further processing.


## Main results to be presented in this talk

- Two new idempotent and associative combination rules, applicable to combine possibly overlapping items of evidence:
- the cautious conjunctive rule $\circledR$
- the bold disjunctive rule (®)
- These rules are derived from the Least commitment principle (an equivalent of the maximum entropy principle for belief functions).
- Each of the four rules $\cap,((),(\perp$ and $®$ occupies a special position in a distinct infinite family of rules with identical algebraic properties.


## Overview

## (1) Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition
(2) The cautious and bold rules
- Informational orderings and the LCP
- The cautious conjunctive rule
- The bold disjunctive ruleFamilies of combination rules
- T-norm-based rules
- Uninorm-based rules
- Applications



## Basic belief assignment Definition

Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{K}\right\}$ be a finite set of answers to a given question $Q$, called a frame of discernment.

Definition (Basic belief assignment )
A basic belief assignment (BBA) on $\Omega$ is a mapping $m: 2^{\Omega} \rightarrow[0,1]$ such that

$$
\sum_{A \subseteq \Omega} m(A)=1
$$

Subsets $A$ of $\Omega$ such that $m(A)>0$ are called focal sets of $m$.

## Basic belief assignment

 Interpretation- A BBA m represents:
- the state of knowledge of a rational agent Ag at a given time $t$, regarding question $Q$;
- by extension, an item of evidence that induces such a state of knowledge.
- $m(A)$ : part of a unit mass of belief assigned to $A$ and to no strict subset.
- $m(\Omega)$ : degree of ignorance.
- $m(\emptyset)$ : degree of conflict. Under the open-world assumption, degree of belief in the hypothesis that the true answer to question $Q$ does not lie in $\Omega$.

Theory of belief functions

## Associated functions

## Belief and implicability functions

## Definition (Belief function)

$$
\operatorname{bel}(A)=\sum_{\emptyset \neq B \subseteq A} m(B), \quad \forall A \subseteq \Omega
$$

Interpretation of $\operatorname{bel}(A)$ : degree of belief in $A$.
Definition (mplicability function)


Theory of belief functions

## Associated functions

## Belief and implicability functions

## Definition (Belief function)

$$
\operatorname{bel}(A)=\sum_{\emptyset \neq B \subseteq A} m(B), \quad \forall A \subseteq \Omega
$$

Interpretation of $\operatorname{bel}(A)$ : degree of belief in $A$.

## Definition (Implicability function)

$$
b(A)=b e l(A)+m(\emptyset), \quad \forall A \subseteq \Omega
$$

Theory of belief functions

## Associated functions

## Plausibility and commonality

## Definition (Plausibility function)

$$
p l(A)=\sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega
$$

## Definition (Commonality function)



Theory of belief functions

## Associated functions

Plausibility and commonality

## Definition (Plausibility function)

$$
p l(A)=\sum_{B \cap A \neq \emptyset} m(B), \quad \forall A \subseteq \Omega
$$

## Definition (Commonality function)

$$
q(A)=\sum_{B \supseteq A} m(B), \quad \forall A \subseteq \Omega
$$

## Equivalence of representations

- Functions bel, b, pl, q, $m$ are in one-to-one correspondance.
- One can move from any representation to another using linear transformations.
- For instance:

$$
\begin{gathered}
p l(A)=b e l(\Omega)-b e l(\bar{A})=1-b(\bar{A}), \quad \forall A \subseteq \Omega \\
m(A)=\sum_{B \supseteq A}(-1)^{|B|-|A|} q(B), \quad \forall A \subseteq \Omega \\
m(A)=\sum_{B \subseteq A}(-1)^{|A|-|B|} b(B), \quad \forall A \subseteq \Omega
\end{gathered}
$$

- There exists at least two other equivalent representations (to be introduced later...)

Theory of belief functions
The cautious and bold rules Families of combination rules Conclusions

## TBM conjunctive rule

## Definition (TBM conjunctive rule)

$m_{1} \cap 2=m_{1} @ m_{2}$ defined as:

$$
m_{1} \cap 2(A)=\sum_{B \cap C=A} m_{1}(B) m_{2}(C), \quad \forall A \subseteq \Omega,
$$

Interpretation: $m_{1} @ m_{2}$ encodes the agent's belief after
receiving $m_{1}$ and $m_{2}$ from two sources $S_{1}$ and $S_{2}$, assuming that:

- $S_{1}$ and $S_{2}$ are distinct (Klawonn and Smets, 1992);
- both $S_{1}$ and $S_{2}$ are reliable.



## TBM conjunctive rule

## Definition (TBM conjunctive rule)

$m_{1} \cap 2=m_{1} \cap m_{2}$ defined as:

$$
m_{1} \cap 2(A)=\sum_{B \cap C=A} m_{1}(B) m_{2}(C), \quad \forall A \subseteq \Omega,
$$

Interpretation: $m_{1} @ m_{2}$ encodes the agent's belief after receiving $m_{1}$ and $m_{2}$ from two sources $S_{1}$ and $S_{2}$, assuming that:

- $S_{1}$ and $S_{2}$ are distinct (Klawonn and Smets, 1992);
- both $S_{1}$ and $S_{2}$ are reliable.


## TBM conjunctive rule <br> Properties

- Algebraic properties:
- Commutativity,
- Associativity
- Neutral element: vacuous BBA $m_{\Omega}\left(m_{\Omega}(\Omega)=1\right)$
$\rightarrow(\mathcal{M}, \cap)$ is a commutative monoid.
- Expression using the commonality functions:

$$
q_{1} \cap 2(A)=q_{1}(A) \cdot q_{2}(A), \quad \forall A \subseteq \Omega
$$

Theory of belief functions
The cautious and bold rules Families of combination rules Conclusions

## TBM disjunctive rule <br> Definition

## Definition (TBM disjunctive rule)

$m_{1}(\bigcirc) 2=m_{1}(1) m_{2}$ defined as:

$$
m_{1}(1) 2(A)=\sum_{B \cup C=A} m_{1}(B) m_{2}(C), \quad \forall A \subseteq \Omega,
$$

Interpretation: $m_{1}(1) m_{2}$ encodes the agent's belief after
receiving $m_{1}$ and $m_{2}$ from two sources $S_{1}$ and $S_{2}$, assuming that:

- $S_{1}$ and $S_{2}$ are distinct (Klawonn and Smets, 1992);
- at least one of $S_{1}$ and $S_{2}$ is reliable.



## TBM disjunctive rule <br> Definition

## Definition (TBM disjunctive rule)

$m_{1}(\bigcirc) 2=m_{1}(1) m_{2}$ defined as:

$$
m_{1}(1) 2(A)=\sum_{B \cup C=A} m_{1}(B) m_{2}(C), \quad \forall A \subseteq \Omega,
$$

Interpretation: $m_{1}(1) m_{2}$ encodes the agent's belief after receiving $m_{1}$ and $m_{2}$ from two sources $S_{1}$ and $S_{2}$, assuming that:

- $S_{1}$ and $S_{2}$ are distinct (Klawonn and Smets, 1992);
- at least one of $S_{1}$ and $S_{2}$ is reliable.


## TBM disjunctive rule

Properties

- Algebraic properties:
- Commutativity,
- Associativity
- Neutral element: $m_{\emptyset}\left(m_{\emptyset}(\emptyset)=1\right)$
$\rightarrow(\mathcal{M},(1))$ is a commutative monoid.
- Expression using the implicability functions:

$$
b_{1}(())_{2}(A)=b_{1}(A) \cdot b_{2}(A), \quad \forall A \subseteq \Omega
$$

## Complementation and De Morgan laws

- Complement of $m$ :

$$
\bar{m}(A)=m(\bar{A}), \quad \forall A \subseteq \Omega
$$

- De Morgan laws for $(\bigcirc$ and $(\bigcirc)$ :

$$
\begin{aligned}
& \overline{m_{1}(\cup) m_{2}}=\overline{m_{1}} \cap \overline{m_{2}}, \\
& \overline{m_{1}\left(m_{2}\right.}=\overline{m_{1}}\left(\overline{m_{2}},\right.
\end{aligned}
$$

( $(\bigcirc)$ and $(\subseteq)$ can be interpreted as generalized intersection and union)

## Overview

## (1) Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decompositionThe cautious and bold rules
- Informational orderings and the LCP
- The cautious conjunctive rule
- The bold disjunctive ruleFamilies of combination rules
- T-norm-based rules
- Uninorm-based rules
- Applications


Theory of belief functions
The cautious and bold rules Families of combination rules Conclusions

## Simple BBA <br> Definition and notation

## Definition (Simple BBA)

A BBA is simple if it is of the form

$$
\begin{aligned}
& m(A)=1-w \\
& m(\Omega)=w
\end{aligned}
$$

with $w \in[0,1]$ and $A \subseteq \Omega$. Notation: $m=A^{w}$.

- Property: $A^{w_{1}} @ A^{w_{2}}=A^{w_{1} w_{2}}$.
- Special cases:
- Vacuous BBA: $A^{1}$ with any $A$. - Categorical BBA: $A^{0}$.
- Can any BBA be decomposed as the ©-combination of simple BBAs?



## Simple BBA <br> Definition and notation

## Definition (Simple BBA)

A BBA is simple if it is of the form

$$
\begin{aligned}
& m(A)=1-w \\
& m(\Omega)=w
\end{aligned}
$$

with $w \in[0,1]$ and $A \subseteq \Omega$. Notation: $m=A^{w}$.

- Property: $A^{w_{1}} \cap A^{w_{2}}=A^{w_{1} w_{2}}$.
- Special cases:
- Vacuous BBA: $A^{1}$ with any $A$.
- Categorical BBA: $A^{0}$.
- Can any BBA be decomposed as the $\cap$-combination of simple BBAs?


## Separable BBA <br> Definition

- The concept of separability was introduced by Shafer (1976) in the case of normal BBAs. It can be adapted to subnormal BBAs as follows.


## Definition (separability)

A BBA $m$ is separable if it can be decomposed as the $\cap$ combination of simple BBAs.

- This decomposition is unique as long as $m$ is nondogmatic ( $m(\Omega)>0$ ). It may be called the canonical conjunctive decomposition of $m$.


## Separable BBA <br> Conjunctive weight function

- If $m$ is separable, then there exists a unique function $w: 2^{\Omega} \mapsto(0,1]$ such that

$$
m=\cap_{A \subset \Omega} A^{w(A)}
$$

and $w(\Omega)=1$ by convention.

- Function $w$ is called the conjunctive weight function associated to $m$. It is thus yet another representation of $m$.
- Can this representation be extended to any nondogmatic BBA?

Theory of belief functions

## Generalized simple BBA

## Definition

## Definition (Smets, 1995)

A generalized simple BBA is a function $\mu: 2^{\Omega} \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
\mu(A) & =1-w \\
\mu(\Omega) & =w \\
\mu(B) & =0 \quad \forall B \in 2^{\Omega} \backslash\{A, \Omega\}
\end{aligned}
$$

for some $A \neq \Omega$ and $w \in[0,+\infty)$. Notation: $\mu=A^{w}$.

## Generalized simple BBA

 Interpretation- If $w \leq 1, \mu$ is a simple BBA.
- If $w>1, \mu$ is not a BBA $\rightarrow$ inverse BBA.
- Interpretation : models a state of knowledge in which we have some diffidence (disbelief) against hypothesis $A$. We need to acquire some evidence in favor of $A$ to reach a neutral state:

$$
A^{w} \cap A^{1 / w}=A^{1} .
$$

Theory of belief functions

## Canonical decomposition of a nondogmatic BBA

Main result

## Theorem (Smets, 1995)

Any nondogmatic BBA can be uniquely decomposed as the © of generalized simple BBAs:

$$
m=\cap_{A \subset \Omega} A^{w(A)},
$$

with $w(A) \in(0,+\infty[$ for all $A \subset \Omega$.

- The canonical weight function is now from $2^{\Omega}$ to $(0,+\infty[$. - $m$ is separable iff $w(A) \leq 1$ for all $A$.


## Canonical decomposition of a nondogmatic BBA Main result

## Theorem (Smets, 1995)

Any nondogmatic BBA can be uniquely decomposed as the $®$ of generalized simple BBAs:

$$
m=\cap_{A \subset \Omega} A^{w(A)}
$$

with $w(A) \in(0,+\infty[$ for all $A \subset \Omega$.

- The canonical weight function is now from $2^{\Omega}$ to $(0,+\infty[$.
- $m$ is separable iff $w(A) \leq 1$ for all $A$.


## Conjunctive weight function

## Computation

- Computation of $w$ from $q$ :

$$
\ln w(A)=-\sum_{B \supseteq A}(-1)^{|B|-|A|} \ln q(B), \quad \forall A \subset \Omega .
$$

- Similarity with

$$
m(A)=\sum_{B \supseteq A}(-1)^{|B|-|A|} q(B), \quad \forall A \subseteq \Omega
$$

- Any procedure for transforming $q$ to $m$ can be used to transform $-\ln q$ to $\ln w$.


## Examples

## Consonant BBAs

- Let $m$ be a consonant BBA, with associated possibility distribution $\pi_{k}=\pi\left(\omega_{k}\right)=q\left(\left\{\omega_{k}\right\}\right), k=1, \ldots, K$, such that

$$
1 \geq \pi_{1} \geq \pi_{2} \geq \ldots \geq \pi_{K}>0
$$

- The conjunctive weight function associated to $m$ is:

$$
w(A)= \begin{cases}\pi_{1} & A=\emptyset \\ \frac{\pi_{k+1}}{\pi_{k}}, & A=\left\{\omega_{1}, \ldots, \omega_{k}\right\}, 1 \leq k<K \\ 1, & \text { otherwise }\end{cases}
$$

- $m$ is separable.


## Examples <br> Quasi-Bayesian BBAs

- Let $m$ be a BBA on $\Omega$ with focal sets $A_{1}, \ldots, A_{n}$, and $\Omega$, such that $A_{i} \cap A_{j}=\emptyset$ for all $i, j \in\{1, \ldots, n\}$.
- We assume that $m(\Omega)+\sum_{k=1}^{n} m\left(A_{k}\right) \leq 1$, so that $\emptyset$ may also be a focal set.
- The conjunctive weight function associated to $m$ is:

$$
w(A)= \begin{cases}\frac{m(\Omega)}{m\left(A_{k}\right)+m(\Omega)}, & A=A_{k} \\ m(\Omega) \prod_{k=1}^{n}\left(1+\frac{m\left(A_{k}\right)}{m(\Omega)}\right), & A=\emptyset \\ 1, & \text { otherwise }\end{cases}
$$

- We may have $w(\emptyset)>1$, so that $m$ is not always separableots


## Expression of the TBM conjunctive rule using w

## Property

We have

$$
\begin{aligned}
m_{1} \cap m_{2} & =\left(\cap \cap_{A \subset \Omega} A^{w_{1}(A)}\right) \cap\left(\cap_{A \subset \Omega} A^{w_{2}(A)}\right) \\
& =\cap_{A \subset \Omega} A^{w_{1}(A) w_{2}(A)}
\end{aligned}
$$

Consequently,

$$
w_{1} \bigcirc 2=w_{1} \cdot w_{2} .
$$

- Similar to $q_{1 ® 2}=q_{1} \cdot q_{2}$.


## Summary

- Several alternative representations of a BBA, including bel, $b, p l, q$ and $w$.
- The TBM conjunctive and disjunctive rules are usually expressed in the $m$-space, but they have simpler representations in other spaces:
- $q$ and $w$ spaces for $®$
- $b$ space and another space to be introduced later for (©).
- Most attempts to generalize $\cap$ have started from its expression in the $m$ space.
- Our approach will be based on the w space.


## Overview

(1) Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition
(2) The cautious and bold rules
- Informational orderings and the LCP
- The cautious conjunctive rule
- The bold disjunctive ruleFamilies of combination rules
- T-norm-based rules
- Uninorm-based rules
- Applications



## Least commitment principle Definition

## Definition (Least commitment principle)

Given two belief functions compatible with a set of constraints, the most appropriate is the least committed (informative).

- Similar to the maximum entropy principle in Probability theory.
- To make this principle operational, it is necessary to define ways of comparing belief functions according to their information content: " $m_{1}$ is more committed than $m_{2}$ ".
- Several such informational orderings have been proposed. utc


## Informational Comparison of Belief Functions

## Definitions

pl-ordering: $m_{1} \sqsubseteq_{p l} m_{2}$ iff $p l_{1}(A) \leq p l_{2}(A)$, for all $A \subseteq \Omega$;
q-ordering: $m_{1} \sqsubseteq_{q} m_{2}$ iff $q_{1}(A) \leq q_{2}(A)$, for all $A \subseteq \Omega$;
$s$-ordering: $m_{1} \sqsubseteq_{s} m_{2}$ iff there exists a stochastic matrix $S$ with general term $S(A, B), A, B \in 2^{\Omega}$ verifying $S(A, B)>0 \Rightarrow A \subseteq B, A, B \subseteq \Omega$, such that

$$
m_{1}(A)=\sum_{B \subseteq \Omega} S(A, B) m_{2}(B), \quad \forall A \subseteq \Omega .
$$

$d$-ordering: $m_{1} \sqsubseteq_{d} m_{2}$, iff there exists a BBA $m$ such that $m_{1}=m ® m_{2}$.

## Informational Comparison of Belief Functions

## Properties

- $m_{1} \sqsubseteq_{d} m_{2} \Rightarrow m_{1} \sqsubseteq_{s} m_{2} \Rightarrow\left\{\begin{array}{l}m_{1} \sqsubseteq_{p l} m_{2} \\ m_{1} \sqsubseteq q m_{2},\end{array}\right.$
- The vacuous BBA $m_{\Omega}$ is the unique greatest element for $\sqsubseteq_{x}$ with $x \in\{p l, q, s, d\}$ :

$$
m \sqsubseteq x m_{\Omega}, \quad \forall m, \forall x \in\{p l, q, s, d\} .
$$

- Monotonicity of $\left(\square\right.$ with respect to $\sqsubseteq_{x}, x \in\{p l, q, s, d\}$ :

$$
m_{1} \sqsubseteq x m_{2} \Rightarrow m_{1} @ m_{3} \sqsubseteq x m_{2} @ m_{3}, \quad \forall m_{1}, m_{2}, m_{3}
$$

$\rightarrow\left(\mathcal{M}, \cap, \sqsubseteq_{x}\right)$ is a partially ordered commutative monoid.

## Cautious combination of belief functions

Principle (Dubois, Prade and Smets, 2001)

- Two sources provide BBAs $m_{1}$ and $m_{2}$, and the sources are both considered to be reliable.
- The agent's state of belief, after receiving these two pieces of information, should be represented by a BBA $m_{12}$ more committed than $m_{1}$, and more committed than $m_{2}$.
- Let $\mathcal{S}_{x}(m)$ be the set of BBAs $m^{\prime}$ such that $m^{\prime} \sqsubseteq_{x} m$, for some $x \in\{p l, q, s, d\}$.
- We thus have $m_{12} \in \mathcal{S}_{X}\left(m_{1}\right)$ and $m_{12} \in \mathcal{S}_{X}\left(m_{2}\right)$ or, equivalently, $m_{12} \in \mathcal{S}_{X}\left(m_{1}\right) \cap \mathcal{S}_{X}\left(m_{2}\right)$.
- According to the LCP, one should select the $x$-least committed element in $\mathcal{S}_{x}\left(m_{1}\right) \cap \mathcal{S}_{x}\left(m_{2}\right)$, if it exists.


## Cautious combination of belief functions

## Problem

- The above approach works for special cases.
- Example (Dubois, Prade, Smets 2001): if $m_{1}$ and $m_{2}$ are consonant, then the $q$-least committed element in $\mathcal{S}_{q}\left(m_{1}\right) \cap \mathcal{S}_{q}\left(m_{2}\right)$ exists and it is unique: it is the consonant BBA with commonality function $q_{12}=q_{1} \wedge q_{2}$.
- In general, neither existence nor unicity of a solution can be guaranteed with any of the $x$-orderings, $x \in\{p l, q, s, d\}$.
- We need to define a new ordering relation.


## The w-ordering

Definition and properties

## Definition ( $w$-ordering)

Let $m_{1}$ and $m_{2}$ be two nondogmatic BBAs. $m_{1} \sqsubseteq_{w} m_{2}$ iff $w_{1}(A) \leq w_{2}(A)$, for all $A \subset \Omega$.

- Interpretation: $m_{1}=m ® m_{2}$ for some separable BBA $m$.
- $m_{1} \sqsubseteq_{w} m_{2} \Rightarrow m_{1} \sqsubseteq_{d} m_{2} \Rightarrow m_{1} \sqsubseteq_{s} m_{2} \Rightarrow\left\{\begin{array}{l}m_{1} \sqsubseteq_{p l} m_{2} \\ m_{1} \sqsubseteq_{q} m_{2},\end{array}\right.$
- No greatest element, but $m_{\Omega}$ is the unique maximal element: $m_{\Omega} \sqsubseteq_{w} m \Rightarrow m=m_{\Omega}$.
- Monotonicity of $@$ :

$$
m_{1} \sqsubseteq_{w} m_{2} \Rightarrow m_{1} @ m_{3} \sqsubseteq_{w} m_{2} @ m_{3}, \quad \forall m_{1}, m_{2}, m_{3}
$$

## Overview

(1) Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition
(2) The cautious and bold rules
- Informational orderings and the LCP
- The cautious conjunctive rule
- The bold disjunctive ruleFamilies of combination rules
- T-norm-based rules
- Uninorm-based rules
- Applications



## The cautious conjunctive rule

 Definition
## Theorem

Let $m_{1}$ and $m_{2}$ be two nondogmatic BBAs. The $w$-least committed element in $\mathcal{S}_{w}\left(m_{1}\right) \cap \mathcal{S}_{w}\left(m_{2}\right)$ exists and is unique. It is defined by the following weight function:

$$
w_{1} \wedge_{2}(A)=w_{1}(A) \wedge w_{2}(A), \quad \forall A \subset \Omega
$$

Definition (cautious conjunctive rule)


## The cautious conjunctive rule

 Definition
## Theorem

Let $m_{1}$ and $m_{2}$ be two nondogmatic BBAs. The w-least committed element in $\mathcal{S}_{w}\left(m_{1}\right) \cap \mathcal{S}_{w}\left(m_{2}\right)$ exists and is unique. It is defined by the following weight function:

$$
w_{1} \otimes_{2}(A)=w_{1}(A) \wedge w_{2}(A), \quad \forall A \subset \Omega .
$$

Definition (cautious conjunctive rule)

$$
m_{1} ® m_{2}=\cap_{A \subset \Omega} A^{w_{1}(A) \wedge w_{2}(A)} .
$$

## The cautious conjunctive rule

## Cautious rule computation

| $m$-space |  | w-space |
| :---: | :---: | :---: |
| $m_{1}$ | $\longrightarrow$ | $w_{1}$ |
| $m_{2}$ | $\longrightarrow$ | $w_{2}$ |
| $m_{1} \wedge m_{2}$ | $\longleftrightarrow$ | $w_{1} \wedge w_{2}$ |

## The cautious conjunctive rule <br> Properties

Commutativity: $\forall m_{1}, m_{2}, m_{1} \bowtie m_{2}=m_{2} \bowtie m_{1}$
Associativity: $\forall m_{1}, m_{2}, m_{3}$,

$$
m_{1} \bowtie\left(m_{2} \bowtie m_{3}\right)=\left(m_{1} \bowtie m_{2}\right) \bowtie m_{3}
$$

No neutral element: $m_{\Omega} ® m=m$ iff $m$ is separable.
Monotonicity:

$$
m_{1} \sqsubseteq_{w} m_{2} \Rightarrow m_{1} ® m_{3} \sqsubseteq_{w} m_{2} ® m_{3}, \quad \forall m_{1}, m_{2}, m_{3} .
$$

$\rightarrow\left(\mathcal{M}_{n d}, \bowtie, \sqsubseteq_{w}\right)$ is a partially ordered commutative semigroup.

## The cautious conjunctive rule

Properties related to the combination of non distinct evidence

Idempotence: $\forall m, m ® m=m$
Distributivity © with respect to ©:

$$
\left(m_{1} \cap m_{2}\right) \bowtie\left(m_{1} \cap m_{3}\right)=m_{1} ®\left(m_{2} ® m_{3}\right), \quad \forall m_{1}, m_{2}, m_{3} .
$$

$\rightarrow$ Item of evidence $m_{1}$ is not counted twice!

## Overview

(1) Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition
(2) The cautious and bold rules
- Informational orderings and the LCP
- The cautious conjunctive rule
- The bold disjunctive rule


## Families of combination rules

- T-norm-based rules
- Uninorm-based rules
- Applications



## Bold disjunctive combination of belief functions

 Principle- The agent receives two BBAs $m_{1}$ and $m_{2}$ from two sources, at least one of which is considered to be reliable.
- The resulting BBA should be less committed than $m_{1}$ and $m_{2}$.
- Formally, $m_{12} \in \mathcal{G}_{X}\left(m_{1}\right) \cap \mathcal{G}_{X}\left(m_{2}\right)$, for some $x \in\{w, d, s, p l, q\}$, with $\mathcal{G}_{x}(m)=$ set of BBAs less committed than $m$ according to $\sqsubseteq_{x}$.
- Most commitment principle: we should choose in $\mathcal{G}_{X}\left(m_{1}\right) \cap \mathcal{G}_{x}\left(m_{2}\right)$ the most committed BBA according to $\sqsubseteq_{x}$ (if it exists).


## Bold disjunctive combination of belief functions

Search for a suitable informational oredring

- With $x=w$, this approach leads to a mass function $m_{12}$ defined by $w_{12}=w_{1} \vee w_{2}$.
- OK with separable BBAs, but $w_{1} \vee w_{2}$ does not always correspond to a belief function.
- We need yet another ordering relation...


## Canonical disjunctive decomposition

 Principle- Let $m$ be a subnormal BBA. Its complement $\bar{m}$ is nondogmatic and can be decomposed as

$$
\bar{m}=\cap_{A \subset \Omega} A^{\bar{w}(A)}
$$

- Consequently, $m$ can be written

$$
m=\overline{\cap_{A \subset \Omega} A^{\bar{w}(A)}}=\left(\bigcup_{A \subset \Omega} \overline{A^{\bar{w}(A)}}\right.
$$

- Each BBA $\overline{A^{\bar{w}(A)}}$ is the complement of a generalized simple BBA. Its focal sets are $\bar{A}$ and $\emptyset$. Notation: $\bar{A}_{v(\bar{A})}$, with $v(\bar{A})=\bar{w}(A)$.


## Canonical disjunctive decomposition

Disjunctive weight function

## Theorem

Any subnormal BBA m can be uniquely decomposed as the (1)-combination of generalized BBAs $A_{v(A)}$ assigning a mass $v(A)>0$ to $\emptyset$, and a mass $1-v(A)$ to $A$, for all $A \subseteq \Omega, A \neq \emptyset$ :

$$
m=(1){ }_{A \neq \emptyset} A_{V(A)} .
$$

Definition (Disjunctive weight function)
Function v : $2^{\Omega} \backslash\{\emptyset\} \rightarrow(0,+\infty)$ will be referred to as the disjunctive weight function.

## Disjunctive weight function

## Properties

- Duality with w: $v(A)=\bar{w}(\bar{A}), \forall A \neq \emptyset$ (similar to $b(A)=\bar{q}(\bar{A}))$.
- Computation from $b$ :

$$
\ln v(A)=-\sum_{B \subseteq A}(-1)^{|A|-|B|} \ln b(B)
$$

Similarity with

$$
m(A)=\sum_{B \subseteq A}(-1)^{|A|-|B|} b(B), \quad \forall A \subseteq \Omega
$$

- TBM disjunctive rule:

$$
v_{1}(\mathbb{O}) 2=v_{1} \cdot v_{2} .
$$



## The $v$-ordering

 Definition and properties
## Definition ( $v$-ordering)

Let $m_{1}$ and $m_{2}$ be two subnormal BBAs. $m_{1} \sqsubseteq{ }_{v} m_{2}$ iff $v_{1}(A) \geq v_{2}(A)$, for all $A \neq \emptyset$.

- Interpretation: $m_{2}=m(1) m_{1}$ for some BBA $m$ such that $\bar{m}$ is separable.
- $m_{1} \sqsubseteq_{v} m_{2} \Rightarrow m_{1} \sqsubseteq_{s} m_{2}$.
- No smallest element, but $m_{\emptyset}$ is the unique minimal element: $m \sqsubseteq_{v} m_{\emptyset} \Rightarrow m=m_{\emptyset}$.
- Monotonicity of (():
$m_{1} \sqsubseteq_{v} m_{2} \Rightarrow m_{1}\left(\cup m_{3} \sqsubseteq_{v} m_{2}(\mathrm{U}) m_{3}, \quad \forall m_{1}, m_{2}, m_{3}\right.$


## The $v$-ordering

Definition and properties

## Definition ( $v$-ordering)

Let $m_{1}$ and $m_{2}$ be two subnormal BBAs.
$m_{1} \sqsubseteq_{v} m_{2}$ iff $v_{1}(A) \geq v_{2}(A)$, for all $A \neq \emptyset$.

- Interpretation: $m_{2}=m\left(m_{1}\right.$ for some BBA $m$ such that $\bar{m}$ is separable.
- $m_{1} \sqsubseteq_{v} m_{2} \Rightarrow m_{1} \sqsubseteq_{s} m_{2}$.
- No smallest element, but $m_{\emptyset}$ is the unique minimal element: $m \sqsubseteq_{v} m_{\emptyset} \Rightarrow m=m_{\emptyset}$.
- Monotonicity of ( () :
$m_{1} \sqsubseteq v m_{2} \Rightarrow m_{1}\left(m_{3} \sqsubseteq_{v} m_{2}\left(m_{3}, \quad \forall m_{1}, m_{2}, m_{3}\right.\right.$


## The bold disjunctive rule

## Definition

## Theorem

Let $m_{1}$ and $m_{2}$ be two subnormal BBAs. The $v$-most committed element in $\mathcal{G}_{v}\left(m_{1}\right) \cap \mathcal{G}_{v}\left(m_{2}\right)$ exists and is unique. It is defined by the following disjunctive weight function:

$$
v_{1}()_{2}(A)=v_{1}(A) \wedge v_{2}(A), \quad \forall A \in 2^{\Omega} \backslash \emptyset
$$

Definition (Bold disjunctive rule)

$$
m_{1} \vee m_{2}=(\bigcirc) A_{\neq \emptyset} A_{v_{1}(A) \wedge v_{2}(A)} .
$$

## The bold disjunctive rule

## Bold rule computation

| $m$-space |  | $v$-space |
| :---: | :---: | :---: |
| $m_{1}$ | $\longrightarrow$ | $v_{1}$ |
| $m_{2}$ | $\longrightarrow$ | $v_{2}$ |
| $m_{1} \vee m_{2}$ | $\longleftrightarrow$ | $v_{1} \wedge v_{2}$ |

## The bold disjunctive rule <br> Properties

Commutativity: $\forall m_{1}, m_{2}, m_{1}\left(m_{2}=m_{2} \vee m_{1}\right.$
Associativity: $\forall m_{1}, m_{2}, m_{3}, m_{1} \vee\left(m_{2} \vee m_{3}\right)=\left(m_{1} \vee m_{2}\right) \vee m_{3}$
No neutral element: $m_{\emptyset} \vee m=m$ iff $\bar{m}$ is separable.
Monotonicity:

$$
m_{1} \sqsubseteq_{v} m_{2} \Rightarrow m_{1} \boxtimes m_{3} \sqsubseteq_{v} m_{2} \boxtimes m_{3}, \quad \forall m_{1}, m_{2}, m_{3} .
$$

$\rightarrow\left(\mathcal{M}_{s}, \boxtimes, \sqsubseteq_{v}\right)$ is a partially ordered commutative semigroup.

## The bold disjunctive rule

Properties (continued)

Idempotence: $\forall m, m \vee m=m$;
Distributivity of (1) with respect to $(\mathbb{)}$ :

$$
\left(m_{1}(\cup) m_{2}\right) \boxtimes\left(m_{1}(\odot) m_{3}\right)=m_{1}\left(\left(m_{2} \boxtimes m_{3}\right), \quad \forall m_{1}, m_{2}, m_{3} .\right.
$$

$\rightarrow$ Item of evidence $m_{1}$ is not counted twice.
De Morgan laws:

$$
\begin{aligned}
& \overline{m_{1} \vee m_{2}}=\bar{m}_{1} \bowtie \bar{m}_{2} \\
& \overline{m_{1} \bowtie m_{2}}=\bar{m}_{1} \boxtimes \bar{m}_{2}
\end{aligned}
$$

## Generalizing the cautious and bold rules

## Four basic rules

|  | product | minimum | $*$ |
| :--- | :---: | :---: | :---: |
| conjunctive weights $w$ | $\cap$ | $®$ | $?$ |
| disjunctive weights $v$ | () | $®$ | $?$ |

- Properties of the minimum and the product on $(0,+\infty]$ :
- Commutativity, associativity;
- Monotonicity: $x \leq y \Rightarrow x \wedge z \leq y \wedge z, \forall x, y, z \in(0,+\infty]$.
- Neutral element:
- $+\infty$ for the minimum $\rightarrow$ t-norm;
- 1 for the product $\rightarrow$ uninorm.
- Generalization to other t-norms and uninorms?

Theory of belief functions
The cautious and bold rules Families of combination rules

Conclusions

## Overview

(1) Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition
(2)

The cautious and bold rules

- Informational orderings and the LCP
- The cautious conjunctive rule
- The bold disjunctive rule
(3) Families of combination rules
- T-norm-based rules
- Uninorm-based rules
- Applications
T. Denœux


## T-norm based conjunctive rules

## Definition

## Proposition

Let $*$ be a positive t-norm on $(0,+\infty]$. Then, for any conjunctive weight functions $w_{1}$ and $w_{2}$, the function $w_{1 * 2}$ defined by :

$$
w_{1 * 2}(A)=w_{1}(A) * w_{2}(A), \forall A \subset \Omega,
$$

is a conjunctive weight function associated to some nondogmatic BBA $m_{1 * 2}$.

Definition (T-norm-based conjunctive rule)

$$
m_{1} \circledast_{w} m_{2}=\bigcirc_{A \subset \Omega} A^{w_{1}(A) * w_{2}(A)}
$$

## T-norm based conjunctive rules

## Properties

- Let $\mathcal{M}_{n d}$ be the set of nondogmatic BBAs, and $\circledast_{w}$ the conjunctive rule based on t-norm $*$. Then $\left(\mathcal{M}_{n d}, \circledast_{w}, \sqsubseteq_{w}\right)$ is a commutative, partially ordered semigroup.
- The minimum is the largest $t$-norm on $(0,+\infty]$. Consequently:


## Proposition

Among all t-norm based conjunctive operators, the cautious rule is the w-least committed:

$$
m_{1} \circledast_{w} m_{2} \sqsubseteq_{w} m_{1} ® m_{2}, \quad \forall m_{1}, m_{2}
$$

## T-norm based disjunctive rules

## Definition and properties

- Let $*$ be a t-norm on $(0,+\infty]$. The disjunctive rule asociated to $*$ is

$$
m_{1} \circledast_{v} m_{2}=(\subseteq) \emptyset \neq A \subseteq \Omega A_{v_{1}(A) * v_{2}(A)}
$$

- $\left(\mathcal{M}_{s}, \circledast_{v}, \sqsubseteq_{v}\right)$ is a commutative, partially ordered semigroup.
- Among all t-norm based disjunctive operators, the bold rule is the $v$-most committed.
- De Morgan laws:

$$
\begin{aligned}
& \overline{m_{1} \circledast_{w} m_{2}}=\bar{m}_{1} \circledast_{v} \bar{m}_{2} \\
& \overline{m_{1} \circledast_{v} m_{2}}=\bar{m}_{1} \circledast_{w} \bar{m}_{2}
\end{aligned}
$$



## Construction of $t$-norms on $(0,+\infty$ ]

## Proposition

Let $T$ be a positive $t$-norm on $[0,1]$, and let $\perp$ be a $t$-conorm on $[0,1]$. Then the operator $* T, \perp$ defined by

$$
x * T, \perp y=\left\{\begin{array}{lc}
x \top y & \text { if } x \vee y \leq 1 \\
\left(\frac{1}{x} \perp \frac{1}{y}\right)^{-1} & \text { if } x \wedge y>1 \\
x \wedge y & \text { otherwise }
\end{array}\right.
$$

for all $x, y \in(0,+\infty]$ is a t-norm on $(0,+\infty]$.
$\rightarrow$ For each pair $(T, \perp)$, there is a pair of dual conjunctive and disjunctive rules generalizing the cautious and bold rules, respectively.

## Overview

(1) Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition
(2) The cautious and bold rules
- Informational orderings and the LCP
- The cautious conjunctive rule
- The bold disjunctive rule
(3) Families of combination rules
- T-norm-based rules
- Uninorm-based rules
- Applications



## Uninorm-based conjunctive rules

 Definition
## Proposition

Let $\circ$ be a uninorm on $(0,+\infty]$ with 1 as neutral element, such that $x \circ y \leq x y$ for all $x, y \in(0,+\infty]$. Then, for any $w$ functions $w_{1}$ and $w_{2}$, the function $w_{1 \circ 2}$ defined by :

$$
w_{1 \circ 2}(A)=w_{1}(A) \circ w_{2}(A), \forall A \subset \Omega,
$$

is a w function associated to some nondogmatic BBA $m_{102}$.

## Definition (Uninorm-based conjunctive rule)

Let $\circ$ be a uninorm on $(0,+\infty]$ verifying the above condition.

$$
m_{1} \odot_{w} m_{2}=\cap_{A \subset \Omega} A^{w_{1}(A) \circ w_{2}(A)}
$$

## Uninorm-based conjunctive rules

## Proposition

Let $\mathcal{M}_{n d}$ be the set of nondogmatic BBAs, and $\odot_{w}$ the conjunctive rule based on uninorm $\circ$ with one as neutral element, and verifying $x \circ y \leq x y$ for all $x, y \in(0,+\infty]$. Then $\left(\mathcal{M}_{n d}, \odot_{w}, \sqsubseteq_{w}\right)$ is a commutative, partially ordered monoid, with the vacuous BBA as neutral element.

- Question: Can we relax the condition $x \circ y \leq x y$ for all $x, y \in(0,+\infty]$, and get an operator $\odot_{w}$ that is not more committed than $\cap$ ?


## Uninorm-based conjunctive rules

## Properties (continued)

## Theorem (Pichon and Denœux, 2007)

Let $\circ$ be a binary operator on $(0,+\infty$ ] such that

- $x \circ 1=1 \circ x=x$ for all $x$ and
- $x \circ y>x y$ for some $x, y>0$.

Then, there exists two BBAs $m_{1}$ and $m_{2}$ such that $w_{1} \circ w_{2}$ is not a valid $w$ function.

## Corollary

Consequence: among all uninorm-norm based conjunctive operators, the TBM conjunctive rule is the w-least committed:

$$
m_{1} \odot_{w} m_{2} \sqsubseteq_{w} m_{1} @ m_{2}, \quad \forall m_{1}, m_{2}, \forall \odot_{w} .
$$

## Uninorm-based disjunctive rules

## Definition and properties

- Let $\circ$ be a uninorm on $(0,+\infty]$ with 1 as neutral element, such that $x \circ y \leq x y$ for all $x, y \in(0,+\infty]$. The disjunctive rule associated to $\circ$ is defined as:

$$
m_{1} \odot_{v} m_{2}=()_{A \subset \Omega} A_{v_{1}(A) \circ v_{2}(A)}
$$

- $\left(\mathcal{M}_{s}, \odot_{v}, \sqsubseteq_{v}\right)$ is a commutative, partially ordered monoid, with $m_{\emptyset}$ as neutral element.
- Among all uninorm-norm based disjunctive operators, the TBM disjunctive rule is the $v$-most committed.
- De Morgan laws:

$$
\begin{aligned}
\overline{m_{1} \odot_{w} m_{2}} & =\bar{m}_{1} \odot_{v} \bar{m}_{2} \\
\overline{m_{1} \odot_{v} m_{2}} & =\bar{m}_{1} \odot_{w} \bar{m}_{2}
\end{aligned}
$$



## Construction of uninorms on $(0,+\infty]$

## Proposition

Let $\top$ be a positive $t$-norm on $[0,1]$ verifying $x \top y \leq x y$ for all $x, y \in[0,1]$, and let $T^{\prime}$ be a $t$-norm on $[0,1]$ verifying $x \top y \geq x y$ for all $x, y \in[0,1]$. Then the operator defined by

$$
x \circ \circ_{\top, T}, y= \begin{cases}x \top y & \text { if } x \vee y \leq 1 \\ \left(\frac{1}{x} \top^{\prime} \frac{1}{y}\right)^{-1} & \text { if } x \wedge y \geq 1 \\ x \wedge y & \text { otherwise }\end{cases}
$$

for all $x, y \in(0,+\infty]$ is a uninorm on $(0,+\infty]$ verifying $x \circ \mathrm{~T}, \mathrm{~T}, \mathrm{y} \leq x y$ for all $x, y>0$.
$\rightarrow$ For each pair $\left(T, T^{\prime}\right)$, there is a pair of dual conjunctive andrys,
disjunctive uninorm-based rules.

## Coincidence for separable BBAs

- Let $T$ and $T^{\prime}$ be $t$-norms on $[0,1]$, and $\perp$ be a t-conorm on $[0,1]$.
- One can build:
- a t-norm ${ }^{\top}, \perp$ on $(0,+\infty]$;
- a uninorm $\circ_{\mathrm{T}, \mathrm{T}}$ on $(0,+\infty]$.
- The corresponding t-norm and uninorm based conjunctive rules $\circledast_{w}$ and $\odot_{w}$ coincide on separable BBAs.
- Consequence: to define a rule for combining separable BBAs, one only needs to define a t-norm $T$.


## Summary

- We now have four infinite families of rules:
- conjunctive and disjunctive t-norm-based rules;
- conjunctive and disjunctive uninorm-based rules.
- In each of these families, one rule plays a special role and is well justified by the LCP:
- the $®$ and $®$ rules are the w-least-committed conjunctive rules in the t-norm-based and uninorm-based families, respectively;
- the ( ) and () rules are the v-most committed disjunctive rules in the $t$-norm-based and uninorm-based families, respectively.
- The justification of the other rules is less clear but...
- Can they be useful in practice?

Theory of belief functions

## Overview

(1) Theory of belief functions

- Motivations
- Basic concepts
- Canonical conjunctive decomposition
(2) The cautious and bold rules
- Informational orderings and the LCP
- The cautious conjunctive rule
- The bold disjunctive rule
(3) Families of combination rules
- T-norm-based rules
- Uninorm-based rules
- Applications



## Application to classification <br> The problem

- Let us consider a classification problem where objects are described by feature vectors $\mathbf{x} \in \mathbb{R}^{p}$ and belong to one of $K$ groups in $\Omega=\left\{\omega_{1}, \ldots, \omega_{K}\right\}$.
- Learning set $\mathcal{L}=\left\{\left(\mathbf{x}_{1}, z_{1}\right), \ldots,\left(\mathbf{x}_{n}, z_{n}\right)\right\}$, where $z_{i} \in \Omega$ denotes the class of object $i$.
- Problem: predict the class of a new object described by feature vector $\mathbf{x}$.
- Application of new combination rules to:
- combine neighborhood information in the evidential $k$ nearest neighbor rule;
- combine outputs from classifiers built from different features.


## Example 1: evidential $k$-NN rule <br> Principle

- The evidence of example $i$ is represented by a simple BBA $m_{i}$ on $\Omega$ defined by

$$
m_{i}=\left\{z_{i}\right\}^{\varphi\left(d_{i}\right)}
$$

where $d_{i}$ is the distance between $\mathbf{x}$ and $\mathbf{x}_{i}$, and $\varphi$ is an increasing function from $\mathbb{R}^{+}$to $[0,1]$.

- The evidence of the $k$ nearest neighbors of $\mathbf{x}$ in $\mathcal{L}$ is pooled using the TBM conjunctive rule:

$$
m=\cap_{i \in N_{k}(\mathbf{x})}\left\{z_{i}\right\}^{\varphi\left(d_{i}\right)}
$$

- Generalization: replace $\cap$ by another conjunctive operator $\circledast_{w}$ defined by a t-norm taken in a parameterized family ranging from the product to the minimum (e.g. Dubois-Prade, Frank).

Theory of belief functions

## The cautious and bold rules

 Families of combination rules ConclusionsT-norm-based rules Uninorm-based rules
Applications

## Results

## Heart disease and USPS datasets



USPS data set


Theory of belief functions

## The cautious and bold rules

 Families of combination rulesConclusions

T-norm-based rules
Uninorm-based rules
Applications

## Results

## Ionosphere and Letter recognition datasets




## Example 2: classifier fusion <br> Principle

- One separate classifier for each feature $\mathbf{x}_{j}$.
- Classifier using input feature $\mathbf{x}_{j}$ produces a BBA $m_{j}$.
- Method:
- logistic regression;
- posterior probabilities tranformed into consonant BBAs using the isopignistic transformation.
- Classifier outputs combined using t-norm based conjunctive operators.
- T-norm on $[0,1]$ taken in Frank's family.

Theory of belief functions

Conclusions

## Results



## Summary <br> \section*{Four basic rules}

- Two new dual commutative, associative et idempotent rules:
- cautious conjunctive rule $w_{1} \wedge_{2}=w_{1} \wedge w_{2}$;
- bold disjunctive rule $v_{1} \otimes_{2}=v_{1} \wedge v_{2}$.
- Both rules are derived from the Least commitment principle, for some (different) informational ordering relations.
- With the TBM conjunctive and disjunctive rules, we now have four basic rules:

| sources | all reliable | at least one reliable |
| :---: | :---: | :---: |
| distinct | $®$ | $(())$ |
| non distinct | $®$ | $(\vee)$ |

## Summary <br> Algebraic properties

- The $®$ and $®$ rules have fundamentally different algebraic properties:
- the $\otimes$ rule is based on a $t$-norm on $(0,+\infty]$ and has no neutral element;
- the $\cap$ rule is based on a uninorm on $(0,+\infty]$ and has a neutral element (the vacuous BBA).
- Similarly, the $\mathbb{V}$ and () rules are based, respectively, on a t-norm and a uninorm; (©) has a neutral element, whereas
(v) has not.
- The pairs $®$ - $\vee$ and $(®-()$ are dual to each other and are related by De Morgan laws.


## Summary

T-norm and uninorm-based rules

- To each of the four basic rules corresponds one infinite family of combination rules:
- the t-norm-based conjunctive and disjunctive families;
- the uninorm-based conjunctive and disjunctive families.
$\rightarrow$ at least as much flexibility and diversity as in Possibility theory!
- Each of the four basic rules occupies a special position in its family:
- The $®$ and $®$ rules are the least committed elements;
- The $\mathbb{\wedge}$ and ( ) rules are the most committed elements.
- Preliminary experiments suggest that the use of general t-norm and uninorm-based rules may improve the performances of information fusion systems.



## References

围
Ph. Smets.
The canonical decomposition of a weighted belief.
In Int. Joint Conf. on Artificial Intelligence, pages
1896-1901, San Mateo, Ca, 1995. Morgan Kaufman.
圊 T. Denœux.
Conjunctive and Disjunctive Combination of Belief Functions Induced by Non Distinct Bodies of Evidence. Artificial Intelligence (In press), 2007.

