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Motivations
Objectives

One of the main tasks in exploratory data analysis: search
for a relevant low-dimensional feature space in which the
original data can be mapped and displayed so as to
uncover their underlying structure.
Usually, the data are precise (each observation consists in
a single value), and each object is represented as a point
of Rq (precise representation).
Problem: how to extend in a meaningful way the usual
feature extraction and data visualization methods to handle
imprecise data?
Reasonable requirement: when data are imprecise, each
object should have an imprecise representation as a region
of Rq.
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Motivations
Imprecise data

By “imprecise data”, we mean set-valued observations, ie,
observations consisting in crisp or fuzzy sets of values.
Two main cases for numerical data:

Interval-valued data: data items are (crisp) real intervals;
Fuzzy data: data items are fuzzy intervals (roughly, real
intervals with ill-defined bounds).

Each crisp or fuzzy set of values represents
either an imprecise (partial) observation of some precise
unknown quantity (e.g., temperature in this room is “around
20 ◦C”, or in the range [19, 21]), or
a distribution of values obtained from repeated
measurements, or related to different entities forming a
class of interest.
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Motivations
Object-attribute vs. dissimilarity data

Feature extraction can be divided in two subproblems:
feature extraction from object-attribute data: transform an
n × p data matrix X whose rows are p-dimensional feature
vectors observed for n objects, into a matrix Y of size n × q,
with q < p. Classical approach: principal component
analysis (PCA).
feature extraction from dissimilarity data: given an n × n
matrix ∆ = (δij) of pairwise dissimilarities between n
objects, finds a n × q data matrix Y of n points in a q
dimensional space such that the interpoint distances reflect
the input dissimilarities. Classical approach:
multidimensional scaling (MDS).

We will focus on the extension of PCA and MDS to
imprecise object-attribute and dissimilarity data,
respectively.
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PCA
Principles and notations (1/2)

Let X = (xij) be the numerical data matrix of order (n × p),
where n denotes the number of objects, and p the number
of variables.
We assume X to be centered, i.e., 1

n
∑n

i=1 xij = 0 for all
j ∈ {1, . . . , p}.
We can think of the n data points as a cloud in Rp, with
center of gravity located at the origin.
PCA attempts to find a q-dimensional subspace L of Rp,
with q ≤ p, such that the orthogonal projections of the n
points on L have maximal variance.
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PCA
Principles and notations (2/2)

The solution is known to be the subspace spanned by the
q normalized eigenvectors u1, . . . , uq of the sample
covariance matrix S = 1

n X′X, associated with the first q
largest eigenvalues.
The matrix Uq = (u1, . . . , uq) of order (p × q) is sometimes
called the component loading matrix.
The coordinates of the objects in the projected space are
defined by matrix Y = XUq, often referred to as the
component score matrix.
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Centers PCA
Extension to interval data

Let us now assume that we have an interval data matrix
[X] = ([x−ij , x+

ij ]) of size n × p.
Each line of [X] is a vector [xi ] = ([xi1], . . . , [xip]) of intervals
called a box. It may be identified with the region of Rp

defined by [xi1]× . . .× [xip].
The simplest extension of PCA to such data was
introduced by Cazes et al (1997): Centers PCA (C-PCA).
Basic idea: apply standard PCA to the single-valued data
matrix Xc obtained by replacing each interval [x−ij , x+

ij ] by
its center xc

ij = (x−ij + x+
ij )/2.

Let Uq = (u1, . . . , uq) be the corresponding component
loading matrix.
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Centers PCA
Definition of interval-valued component scores

We may define the
interval-valued component
scores for object i as the
bounds of the component
scores for all x ∈ [xi ].
Each box [yi ] is the interval
hull of the set of component
scores of the vertices of [xi ].
Matrix [Y] is easily computed
as [Y] = [X]Uq using interval
arithmetics.

u

[xi]

xi
c

[yi]
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Centers PCA
Extension to fuzzy data

Let X̃ = (x̃ij) be a fuzzy data matrix of size n × p.
Each data item x̃ij is a fuzzy interval, ie, a fuzzy subset of
R whose α-cuts αx̃ij for α ∈ (0, 1] are closed intervals.
Each line of X̃ is a vector x̃i = (x̃i1, . . . , x̃ip) of fuzzy
intervals that may be called a fuzzy box. It can be identified
with the fuzzy subset of Rp with α-cuts αx̃i =α x̃i1 × . . .α x̃ip.
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Centers PCA
Extension to (fuzzy data)

Let Uq be the component
loading matrix obtained by
applying standard PCA to the
defuzzified data matrix;
Fuzzy component scores may
be defined by projecting each
α-cut αx̃i on L.
If all fuzzy numbers are
trapezoidal, matrix Ỹ is easily
computed as Ỹ = X̃Uq using
fuzzy arithmetics.
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Connection between PCA and neural networks
NN architecture

As first noticed by Bourlard and Kamp (1988), there is an
interesting connection between PCA and autoassociative
multilayer perceptrons (MLPs).
Let us consider a three-layer MLP:

A B

p input 
units

q hidden
units

p output
units
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Connection between PCA and neural networks
Error function

Let us assume that this network is trained in
autoassociative mode, i.e., using the inputs as target
outputs, with the quadratic error function:

E(A, B) =
n∑

i=1

‖xi − zi‖2 =

p∑
k=1

(xik − zik )2,

where zi = BAxi is the vector of outputs for input vector xi .
As E(A, B) = E(CA, BC−1) for any invertible q × q matrix
C, the error may be expressed as a function of the global
map W = BA.
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Connection between PCA and neural networks
Main result

Theorem (Baldi and Hornik, 1989)
The error E expressed as a function of the global map W has a
unique local and global minimum of the form W = BA with

A = CU ′
q

B = UqC−1,

where Uq is the component loading matrix and C is an arbitrary
invertible q × q matrix.
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Connection between PCA and neural networks
Hidden unit activities as transformed component scores

The vector of hidden unit activities is then

Ax = CU ′
qx = Cy

where y is the vector of component scores for input x → it
is identical to y up to an arbitrary linear transformation.
If the constraint A′ = B is imposed, then C is becomes an
orthogonal matrix: the hidden unit activities and the
principal components are then related by an isometric
transformation.
The propagation equation becomes z = BB′x.
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NN-PCA
Extension to fuzzy input data

Let us now assume that we have a fuzzy data matrix
X̃ = (x̃ij).
Each data item x̃ij will be assumed to be a trapezoidal
fuzzy number parameterized as x̃ij = (x (1)

ij , x (2)
ij , x (3)

ij , x (4)
ij ):

x(1) x(2) x(3) x(4)

x
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NN-PCA
Propagation of fuzzy inputs

Input data can be propagated in the PCA autoassociative
neural network using Zadeh’s extension principle (a
principle for extending any function to fuzzy sets).
The calculations can be easily performed using fuzzy
arithmetics.
The vectors ỹ and z̃ of hidden unit activations and outputs
are defined as

ỹ = B′x̃
z̃ = Bỹ.

Their components are trapezoidal fuzzy numbers.
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NN-PCA
Error function

The reconstruction error for component k of input vector i
may be defined as

e(x̃ik , z̃ik ) =
4∑

`=1

(z(`)
ik − x (`)

ik )2, k = 1, . . . , d , (1)

The total error is

E(B) =
n∑

i=1

p∑
k=1

e(x̃ik , z̃ik ).

The minimization of E with respect to B can be performed
using a gradient descent procedure.
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NN-PCA
Illustration
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Sensory evaluation example
Data and problem statement

Data from a research project performed in collaboration
with a French car manufacturer.
The entities under study were noises recorded inside
several vehicles.
The data consisted in scores given by 12 judges describing
their perception of 21 sounds according to 5 attributes.
Each sound was presented 3 times to each subject,
yielding a four-way data matrix: sounds × attributes ×
subjects × replications.
The aim of this work was to study the variability of the
responses among the panelists and the variability of each
subject accross repetitions.
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Sensory evaluation example
Data encoding and experimental setting

Each of the 21× 12 pairs (sound, subject) was considered
as an object described by five fuzzy attributes.
For each attribute, the three scores available from
replications were converted into a triangular fuzzy number
(which is a special case of trapezoidal fuzzy number with
x (2) = x (3)) defined by the minimum, maximum and
median value.
We thus obtained a set of 12× 21 vectors composed of 5
triangular fuzzy numbers.
An autoassociative network with two hidden units (q = 2)
was used to visualize the data.
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Sensory evaluation example
Two-dimensional projection of sounds (NN-PCA)
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Sensory evaluation example
Two-dimensional projection of sounds (C-PCA)
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Sensory evaluation example
Comparison between NN-PCA and C-PCA

NN-PCA C-PCA
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Sensory evaluation example
Comparison of two assessors (NN-PCA)
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Sensory evaluation example
Fuzzy correlations
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Multidimensional scaling
Principles and notations

Let ∆ = (δij) be a square matrix expressing the precise
dissimilarities between n objects.
Classically, we seek to represent each object i by a point xi
in Rp such that the interpoint distances reflect, according
to some criterion, the input dissimilarities.
Let X = (x1, . . . , xn)

′ be the n × p matrix encoding the n
p-dimensional vectors. We search X so as to minimize a
cost (stress) function such as:

σ(X) =
∑
i<j

(dij − δij)
2,

where dij is the Euclidean distance between xi and xj .
σ(X) can be minimized using an iterative procedure.

T. Denœux, M.-H. Masson Dimensionality reduction and visualization of fuzzy data



Motivations
Principal Component Analysis

Multidimensional scaling
Conclusions

Principle and notations
Least-squares fitting
Possibilistic fitting
Color perception example

Multidimensional scaling
Generalization to interval data

Let us now assume the dissimilarities to be given in the
form of intervals [δij ] = [δ−ij , δ+

ij ].
Each interval may be interpreted as the set of possible
values for the true unknown dissimilarity δij .
Since the objects are imprecisely located with respect to
each other, it is natural to represent object as a regions Ri
in Rp.
The minimum and maximum distances between two
regions Ri and Rj are then defined by:

d−
ij = min

xi∈Ri ,xj∈Rj
‖xi − xj‖

d+
ij = max

xi∈Ri ,xj∈Rj
‖xi − xj‖.
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Multidimensional scaling
Hypersphere model

In the simplest model, each region Ri is chosen to be a
hypersphere with center ci ∈ Rp and radius ri ∈ R+.
d−

ij and d+
ij can then be simply obtained as functions of the

radii, and the distance dij between the two centers:

dij
+

dij

d

c

−
ij

cj
r

i

rj
i

The problem is then to determine the centers and the radii
such that the interval-valued distances represent the
dissimilarities in an optimal way.
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Multidimensional scaling
Generalization to fuzzy data

More general situation: each dissimilarity is expressed as
a fuzzy interval.
Such data may come from a linguistic evaluation (“very
close”, “quite different”, etc.), or from a distribution of
responses from a panel of assessors.
It is then natural to represent each object by a fuzzy region
R̃i in Rp defined by a fuzzy membership function µeRi

.
According to Zadeh’s extension principle, the distance
between two fuzzy regions R̃i et R̃j can be defined as a
fuzzy interval d̃ij .
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Multidimensional scaling
Fuzzy hypersphere model

Simple model: each object is represented by a fuzzy
region whose α-cuts are concentric hyperspheres of radii
αri and center ci :

x1

x2

0Ri
~

αRi
~

1Ri
~

ci

0ri

μRi~

αri

1ri

Each α-cut of d̃ij is a closed interval αd̃ij = [αd̃−
ij , αd̃+

ij ],
whose bounds are the minimum and maximum distances
between the α-cuts of R̃i and R̃j .
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Least-squares fitting
Interval-valued dissimilarities

In the case of interval-valued dissimilarities, the stress
function can be defined as:

σ′(R) =
∑
i<j

(d−
ij − δ−ij )2 +

∑
i<j

(d+
ij − δ+

ij )2,

where R denotes the set of n regions {R1, . . . , Rn}.
The n(p + 1) model parameters (n centers defined by p
coordinates and n radii) can then be determined by
minimizing σ′(R) with respect to R, using an iterative
gradient descent algorithm.
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Least squares fitting

Properties
It may be shown that:

If all the dissimilarities are precise (i.e. δ−ij = δ+
ij ), the model

leads to null radii, thereby generalizing the classical model;
Otherwise, each radius rk is linearly related to the quantity

sk =
∑
i 6=k

(δ+
ik − δ−ik ),

which is a measure of the global imprecision of the
dissimilarities between object k and all other objects.

Consequently, the size of the region Ri describing object i is
related to the imprecision of the data regarding that object.
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Least-squares fitting
Fuzzy dissimilarities

To fit the fuzzy model, a set {αi}i=1,c of predetermined
levels of α-cuts has to be chosen.
The stress function can then be defined as:

σ′′(R̃) =
c∑

k=1

∑
i<j

(αk d̃−
ij −

αk δ̃−ij )2 +
c∑

k=1

∑
i<j

(αk d̃+
ij −

αk δ̃+
ij )2,

where R̃ denotes the set of the fuzzy regions R̃i , and 0x̃
represents, by convention, the support of fuzzy number x̃ .
The number of parameters of the model is n(p + c): n
centers defined by p coordinates cij , i = 1, . . . , n,
j = 1, . . . , p and nc radii αk ri , i = 1, . . . , n, k = 1, . . . , c.
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Possibilistic fitting
Interval-valued dissimilarities

As we have seen, the LS approach provides a
configuration such that the dissimilarities are recovered
approximatively.
In contrast, the possibilistic approach searches for a
configuration that provides guaranteed bounds for
dissimilarities.
Let us suppose that the centers ci have already been
determined, e.g. using the LS method.
We may attempt to find the smallest radii ri such that the
following condition is satisfied:

[δ−ij , δ+
ij ] ⊆ [d−

ij , d+
ij ] ∀i , j .
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Possibilistic fitting
Formalization as a LP problem

This leads to the following optimization problem:

min
r

n∑
i=1

ri

subject to:
[δ−ij , δ+

ij ] ⊆ [d−
ij , d+

ij ] ∀i , j . (2)

ri ≥ 0 ∀i = 1, n . (3)

Constraints (2) may be written

ri + rj ≥ max(dij − δ−ij , δ+
ij − dij) ∀i , j .

This is a linear programming problem, which is always
feasible.
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Possibilistic fitting
Interpretation

Remark
In contrast to least squares fitting, possibilistic fitting does not
lead to null radii in case of precise but erroneous input
dissimilarities: the obtained representation reflects both

the imprecision in the data (the widths of the input
dissimilarities) and
the goodness-of-fit of the model (i.e., the choice of the
Euclidean distance, the dimensionality of the configuration,
and the estimation errors).
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Possibilistic fitting
Fuzzy dissimilarities

We now seek fuzzy regions such that δ̃ij ⊆ d̃ij , ∀i , j , where
⊆ now denotes the standard fuzzy set inclusion, i.e.

µeδij
≤ µedij

, ∀i , j .

Again, this may be achieved by a LP problem:

min
r

c∑
k=1

n∑
i=1

αk ri

subject to:
αk ri + αk rj ≥ max(dij − αk δ−ij , αk δ+

ij − dij) ∀i , j , k
α0ri ≥ 0, ∀i

αk ri ≤ αk+1ri , ∀i ,∀k < c,
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Color data example
Data and experimental settings

Experiment reported by Helm (1964) about the perception
of colors by human subjects.
Ten colored objects were presented to different subjects
who were asked to rate the perceived dissimilarities.
They were classified into two groups: some of them had a
normal color vision, whereas the other had a
color-deficient vision. Two separate analyses were
conducted on these two groups.
The perception of each group was summarized using a
triangular fuzzy number computed from the minimum,
maximum and mean responses of the subjects.
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Color data example
Results using the LS model
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Color data example
Reconstruction of dissimilarities using the LS model
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Color data example
Results using the possibilistic model
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Color data example
Reconstruction of dissimilarities using the possibilistic model
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Conclusions
Summary

Methods for dimensionality reduction and visualization of
interval and fuzzy data have been reviewed.
These methods extend PCA and MDS in such a way that
each object is no longer represented by a point, but by a
crisp or a fuzzy region in a low-dimensional feature space.
This makes it possible to represent in the same display
both the variatiability accross objects, but also the
imprecision or spread of observations for each object.
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Conclusions
Main principles

Three main approaches for extending classical feature
extraction and data visualizing techniques to imprecise data:

Propagation approach: construct a mapping from the
original feature space to a lower dimensional feature space
using precise data, and then compute the images of
interval-valued or fuzzy data through this mapping
(C-PCA).
Cost minimization approach: extend the cost functions
optimized by standard approaches, to the case of
interval-valued or fuzzy data (NN-PCA, LS-MDS).
Imprecision minimization approach: find the most precise
representations of the original data, verifying some
constraints (Possibilistic MDS).
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Conclusions
Perspectives

The same principles could be applied to extend other feature
extraction and data visualization methods, such as

Non linear PCA (e.g. Kernel PCA, principal curves),
Independent Component Analysis,
Correspondence analysis,
etc.

T. Denœux, M.-H. Masson Dimensionality reduction and visualization of fuzzy data



References

References

Denœux, T., Masson, M.-H., 2004.
Principal component analysis of fuzzy data using
autoassociative neural networks.
IEEE Transactions on Fuzzy Systems, 12(3):336–349.

Hébert, P.-A. , Masson, M.-H., Denœux, T., 2006.
Fuzzy multidimensional scaling.
Computational Statistics and Data Analysis, 51(1),
335-359.

T. Denœux, M.-H. Masson Dimensionality reduction and visualization of fuzzy data


	Motivations
	Principal Component Analysis
	Principle and notations
	Centers PCA
	Neural network PCA
	Sensory evaluation example

	Multidimensional scaling
	Principle and notations
	Least-squares fitting
	Possibilistic fitting
	Color perception example

	Conclusions
	Appendix
	References


