Classification and clustering using belief functions

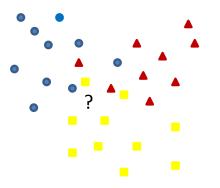
Thierry Denœux

Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 7253)

https://www.hds.utc.fr/~tdenoeux

School of Automation Northwestern Polytechnical University Xi'an, China, October 26, 2015

Classification problem

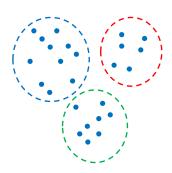


- A population is assumed to be partitioned in *c* groups or classes
- Let $\Omega = \{\omega_1, \dots, \omega_c\}$ denote the set of classes
- Each instance is described by
 - A feature vector $\boldsymbol{x} \in \mathbb{R}^{p}$
 - A class label $y \in \Omega$
- Problem: given a learning set $\mathcal{L} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, predict the class label of a new instance described by \mathbf{x}

- ロ ト - (同 ト - (回 ト -)戸

= nar

Clustering problem



- n objects described by
 - Attribute vectors *x*₁,..., *x_n* (attribute data) or
 - Dissimilarities (proximity data)
- Goal: find a meaningful structure in the data set, usually a partition into *c* subsets, or a more complex mathematical representation (fuzzy partition, etc.)

イロト イポト イヨト イヨト ヨ

= 200

Why can belief functions be useful?

Exploit the high expressiveness of belief functions to

- (a) Represent more faithfully the uncertainty of the predictions made by a classifier (for, e.g., combining several classifiers, or providing the user with richer information about the uncertainty of the classification)
- (b) Reveal richer information about the data (clustering problems)
- Prepresent uncertainty about the data themselves:
 - (a) Uncertain class labels (partially supervised learning)
 - (b) Clustering of imprecise/uncertain data

Overview of the main approaches

Classification

- Classifier fusion: convert the outputs from standard classifiers into belief functions and combine them using, e.g., Dempster's rule (e.g., Quost al., 2011)
- Oevelop evidence-theoretic classifiers directly providing belief functions as outputs:
 - (a) Generalized Bayes theorem, extends the Bayesian classifier when class densities and priors are ill-known (Appriou, 1991; Denœux and Smets, 2008)
 - (b) Distance-based classifiers: evidential *K*-NN rule (Denœux, 1995), evidential neural network classifier (Denœux, 2000)
 - (c) Predictive evidential classifiers (e.g., logistic regression, Xu et al., 2015)

<ロ> <同> <同> <日> <同> <日> <同> <日> <日</p>

Overview of the main approaches

Express uncertainty about the membership of objects to clusters using the notion of credal partition

- Match degrees of conflict with inter-point distances: EVCLUS algorithm (Denoeux and Masson, 2004)
- Extend prototype-based clustering methods such as the hard or fuzzy *c*-means: Evidential *c*-means (Masson and Denoeux, 2008)
- Decision-directed clustering using the evidential K-NN classifier: <u>EK-NNclus</u> algorithm (Denoeux et al, 2015)

<ロ> <同> <同> <日> <同> <日> <同> <日> <日</p>

Overview of the main approaches

- In classification, partially supervised data (with uncertain class labels) can be handled using the evidential K-NN classifier (Denoeux, 1995; Denoeux and Zouhal, 2001)
- More general approach: extend maximum likelihood estimation to uncertain data (e.g., with uncertain class labels and/or attributes) using the Evidential Expectation-Maximization (E²M) algorithm (Denoeux, 2011; Denoeux, 2012)

<ロ> <同> <同> <日> <同> <日> <同> <日> <日</p>

Outline

- Evidential K-NN rule
- Evidential neural network classifier

2 Evidential clustering

- Evidential c-means
- EK-NNclus

Outline

Evidential classification

- Evidential K-NN rule
- Evidential neural network classifier

2 Evidential clustering

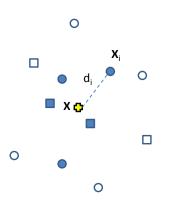
- Evidential c-means
- EK-NNclus

- Evidential K-NN rule
- Evidential neural network classifier

- 2 Evidential clustering
 - Evidential c-means
 - EK-NNclus

Evidential K-NN rule Evidential neural network classifier

Evidential K-NN rule



- Let N_K(x) ⊂ L denote the set of the K nearest neighbors of x in L, based on some distance measure
- Each *x_i* ∈ *N_K*(*x*) can be considered as a piece of evidence regarding the class of *x*

・ 同 ト ・ ヨ ト ・ ヨ ト

= 200

• The strength of this evidence decreases with the distance *d_i* between *x* and *x_i*

Evidential K-NN rule

• If $y_i = \omega_k$, the evidence of (x_i, y_i) can be represented by

$$\begin{split} m_i(\{\omega_k\}) &= \varphi\left(d_i\right) \\ m_i(\{\omega_\ell\}) &= 0, \quad \forall \ell \neq k \\ m_i(\Omega) &= 1 - \varphi\left(d_i\right) \end{split}$$

where and φ is a decreasing function from $[0, +\infty)$ to [0, 1] such that $\lim_{d\to +\infty} \varphi(d) = 0$

• The evidence of the *K* nearest neighbors of *x* is pooled using Dempster's rule of combination

$$m = \bigoplus_{\mathbf{x}_i \in \mathcal{N}_{\mathcal{K}}(\mathbf{x})} m_i$$

• Function φ can be fixed heuristically or selected among a family $\{\varphi_{\theta} | \theta \in \Theta\}$ using, e.g., cross-validation

Evidential K-NN rule

- Let λ_{kℓ} be the cost of assigning a pattern to class k, if it actually belongs to class ℓ
- Assume that $\lambda_{k\ell} = 0$ if $k = \ell$ and $\lambda_{k\ell} = 1$ otherwise
- Given a mass function *m* on Ω, the lower and upper expected costs if the pattern is assigned to class *k* are

$$R_*(\alpha_k) = \sum_{A \subseteq \Omega} m(A) \min_{\omega_\ell \in A} \lambda_{k\ell} = 1 - Pl(\{\omega_k\})$$
$$R^*(\alpha_k) = \sum_{A \subseteq \Omega} m(A) \max_{\omega_\ell \in A} \lambda_{k\ell} = 1 - Bel(\{\omega_k\})$$

- Corresponding decision rules: select the class with the maximum plausibility or the maximum degree of belief
- The maximum plausibility rule has a computational advantage

Evidential K-NN rule Practical computation

• The plausibilities for each mass function *m_i* are

$$pl_i(\omega_k) = \begin{cases} 1 & \text{if } y_i = \omega_k \\ 0 & \text{otherwise} \end{cases}, \quad k = 1, \dots, c$$

• The plausibilities for the combined mass function *m* are

$$pl(\omega_k) \propto \prod_{oldsymbol{x}_i \in \mathcal{N}_K(oldsymbol{x})} \left(1 - arphi(oldsymbol{d}_i)
ight)^{1 - s_{ik}}$$

where $s_{ik} = 1$ if $y_i = \omega_k$ and $s_{ik} = 0$ otherwise

• The log-plausibilities are

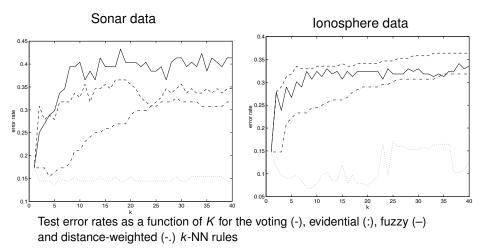
$$\ln pl(\omega_k) = -\sum_{\boldsymbol{x}_i \in \mathcal{N}_K(\boldsymbol{x})} s_{ik} \ln (1 - \varphi(\boldsymbol{d}_i)) + C$$

They can be computed in time proportional to K|Ω|

> = = ~ ~ ~

Evidential K-NN rule Evidential neural network classifier

Performance comparison (UCI database)



→ Ξ → < Ξ</p>

= 200

Partially supervised data

· We now consider a learning set of the form

$$\mathcal{L} = \{(\boldsymbol{x}_i, m_i), i = 1, \ldots, n\}$$

where

- **x**_i is the attribute vector for instance *i*, and
- *m_i* is a mass function representing uncertain expert knowledge about the class *y_i* of instance *i*
- Special cases:
 - $m_i(\{\omega_k\}) = 1$ for all *i*: supervised learning
 - $m_i(\Omega) = 1$ for all *i*: unsupervised learning

Evidential K-NN rule Evidential neural network classifier

Evidential k-NN rule for partially supervised data

- \cap (X_{i.}m_i) Ο
- Each mass function *m_i* is discounted (weakened) with a rate depending on the distance *d_i*

$$egin{aligned} m_i'(m{A}) &= arphi\left(m{d}_i
ight) m_i(m{A}), & orall m{A} \subset \Omega \ m_i'(\Omega) &= 1 - \sum_{m{A} \subset \Omega} m_i'(m{A}) \end{aligned}$$

• The *K* mass functions *m*[']_i are combined using Dempster's rule

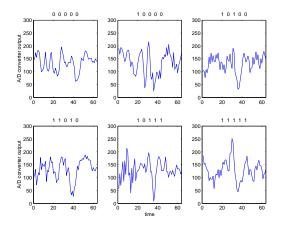
$$m = \bigoplus_{\boldsymbol{x}_i \in \mathcal{N}_{\mathcal{K}}(\boldsymbol{x})} m'_i$$

イロト イポト イヨト イヨト 正

Evidential K-NN rule Evidential neural network classifier

Example: EEG data

EEG signals encoded as 64-D patterns, 50 % positive (K-complexes), 50 % negative (delta waves), 5 experts.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなべ

Evidential K-NN rule Evidential neural network classifier

Results on EEG data (Denoeux and Zouhal, 2001)

- *c* = 2 classes, *p* = 64
- For each learning instance **x**_i, the expert opinions were modeled as a mass function *m*_i.
- *n* = 200 learning patterns, 300 test patterns

K	<i>K</i> -NN	w K-NN	Ev. K-NN	Ev. K-NN
			(crisp labels)	(uncert. labels)
9	0.30	0.30	0.31	0.27
11	0.29	0.30	0.29	0.26
13	0.31	0.30	0.31	0.26

Outline

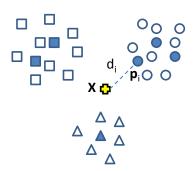
- Evidential K-NN rule
- Evidential neural network classifier

2 Evidential clustering

- Evidential c-means
- EK-NNclus

Evidential K-NN rule Evidential neural network classifier

Evidential neural network classifier



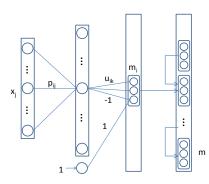
- The learning set is summarized by *r* prototypes.
- Each prototype \boldsymbol{p}_i has membership degree u_{ik} to each class ω_k , with $\sum_{k=1}^{c} u_{ik} = 1$.
- Each prototype *p_i* brings a piece of evidence regarding the class of *x*, whose reliability decreases with the distance *d_i* between *x* and *p_i*.

< 回 ト < 三 ト < 三

= ∕) Q (~)

Evidential K-NN rule Evidential neural network classifier

Neural network architecture



Mass function induced by *p_i*:

$$m_i(\{\omega_k\}) = \alpha_i u_{ik} \exp(-\gamma_i d_i^2),$$

$$k = 1, \dots, c$$

$$m_i(\Omega) = 1 - \alpha_i \exp(-\gamma_i d_i^2)$$

• Combination:

$$m = \bigoplus_{i=1}^{r} m_i$$

• All parameters are learnt from data by minimizing an error function.

Evidential K-NN rule Evidential neural network classifier

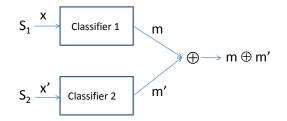
Results on classical data

	Classifier	test error rate
	Multi-layer perceptron (88 units)	0.49
	Radial Basis Function (528 units)	0.47
Vowel data	Gaussian node network (528 units)	0.45
c = 11,	Nearest neighbor	0.44
<i>p</i> = 10	Linear Discriminant Analysis	0.56
<i>n</i> = 568	Quadratic Discriminant Analysis	0.53
test: 462 ex.	CART	0.56
(different	BRUTO	0.44
speakers)	MARS (degree=2)	0.42
	Evidential NN (33 prototypes)	0.38
	Evidential NN (44 prototypes)	0.37
	Evidential NN (55 prototypes)	0.37

Thierry Denœux Classification and clustering using belief functions

Evidential K-NN rule Evidential neural network classifier

Data fusion example

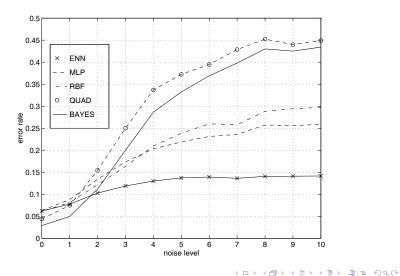


• c = 2 classes

- Learning set (n = 60): $\mathbf{x} \in \mathbb{R}^5$, $\mathbf{x}' \in \mathbb{R}^3$, Gaussian distributions, conditionally independent
- Test set (real operating conditions): $\mathbf{x} \leftarrow \mathbf{x} + \epsilon, \epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$

Evidential K-NN rule Evidential neural network classifier

Results Test error rates: $\mathbf{x} + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2 I)$



Thierry Denœux Classification and clustering using belief functions

Outline

Evidential classification

- Evidential K-NN rule
- Evidential neural network classifier

2 Evidential clustering

- Evidential *c*-means
- EK-NNclus

Evidential *c*-means EK-NNclus

Clustering concepts Hard and fuzzy clustering

- Hard clustering: each object belongs to one and only one group. Group membership is expressed by binary variables u_{ik} such that $u_{ik} = 1$ if object *i* belongs to group *k* and $u_{ik} = 0$ otherwise
- Fuzzy clustering: each object has a degree of membership $u_{ik} \in [0, 1]$ to each group, with $\sum_{k=1}^{c} u_{ik} = 1$
- Fuzzy clustering with noise cluster: each object has a degree of membership u_{ik} ∈ [0, 1] to each group and a degree of membership u_{i*} ∈ [0, 1] to a noise cluster, with ∑_{k=1}^c u_{ik} + u_{i*} = 1

Evidential *c*-means EK-NNclus

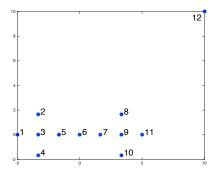
Clustering concepts Possibilistic, rough, credal clustering

- Possibilistic clustering: the condition $\sum_{k=1}^{c} u_{ik} = 1$ is relaxed. Each number u_{ik} can be interpreted as a degree of possibility that object *i* belongs to cluster *k*
- Rough clustering: the membership of object *i* to cluster *k* is described by a pair $(\underline{u}_{ik}, \overline{u}_{ik}) \in \{0, 1\}^2$, with $\underline{u}_{ik} \leq \overline{u}_{ik}$, indicating its membership to the lower and upper approximations of cluster *k*
- Evidential clustering: based on Dempster-Shafer (DS) theory (the topic of this talk)

Evidential *c*-means EK-NNclus

Evidential clustering

- In evidential/credal clustering, the cluster membership of each object is considered to be uncertain and is described by a (not necessarily normalized) mass function m_i over Ω
- Example:



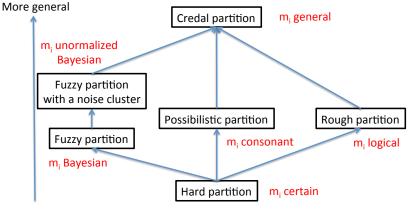
Credal partition								
	Ø	$\{\omega_1\}$	$\{\omega_2\}$	$\{\omega_1,\omega_2\}$				
<i>m</i> 3	0	1	0	0				
m_5	0	0.5	0	0.5				
m_6	0	0	0	1				
<i>m</i> ₁₂	0.9	0	0.1	0				

伺下 イヨト イヨト

= 200

Evidential *c*-means EK-NNclus

Relationship with other clustering structures



Less general

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなべ

Evidential *c*-means EK-NNclus

Algorithms

- EVCLUS (Denoeux and Masson, 2004)
 - Proximity (possibly non metric) data
 - Multidimensional scaling approach
 - Variant: Constrained EVCLUS (CEVCLUS) (Antoine et al., 2014): EVCLUS with pairwise constraints
- Evidential c-means (ECM) (Masson and Denoeux, 2008)
 - Attribute data
 - HCM, FCM family (alternate optimization of a cost function)
 - Variants
 - Relational Evidential *c*-means (RECM): (Masson and Denoeux, 2009): ECM for proximity data
 - Constrained Evidential c-means (CECM) (Antoine et al., 2011): ECM with pairwise constraints
 - Spatial Evidential C-Means (Lelandais et al., 2014): ECM with spatial constraints, for image segmentation
- EK-NNclus (Denoeux et al, 2015)
 - Attribute or proximity data
 - Decision-directed clustering algorithm based on the evidential
 K-NN classifier

Outline

Evidential classification

- Evidential K-NN rule
- Evidential neural network classifier

Evidential clustering Evidential *c*-means

EK-NNclus

- Problem: generate a credal partition *M* = (*m*₁,...,*m_n*) from attribute data *X* = (*x*₁,...,*x_n*), *x_i* ∈ ℝ^p
- Generalization of hard and fuzzy *c*-means algorithms:
 - Each class represented by a prototype
 - Alternate optimization of a cost function with respect to the prototypes and to the credal partition

Evidential *c*-means EK-NNclus

Fuzzy *c*-means (FCM)

Minimize

$$J_{ ext{FCM}}(U,V) = \sum_{i=1}^n \sum_{k=1}^c u_{ik}^eta d_{ik}^2$$

with $d_{ik} = ||\mathbf{x}_i - \mathbf{v}_k||$ under the constraints $\sum_k u_{ik} = 1$ for all *i*

Alternate optimization algorithm:

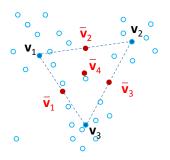
$$\mathbf{v}_{k} = \frac{\sum_{i=1}^{n} u_{ik}^{\beta} \mathbf{x}_{i}}{\sum_{i=1}^{n} u_{ik}^{\beta}} \quad k = 1, \dots, c$$
$$u_{ik} = \frac{d_{ik}^{-2/(\beta-1)}}{\sum_{\ell=1}^{c} d_{\ell\ell}^{-2/(\beta-1)}}$$

Thierry Denœux Classification and clustering using belief functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のなべ

Evidential *c*-means EK-NNclus

ECM algorithm



- Each class ω_k represented by a prototype \boldsymbol{v}_k
- Basic ideas:
 - For each non empty A_j ∈ Ω, m_{ij} = m_i(A_j) should be high if x_i is close to v
 *v*_j
 - The distance to the empty set is defined as a fixed value δ

< 回 ト < 三 ト < 三

= 900

Evidential *c*-means EK-NNclus

• Criterion to be minimized:

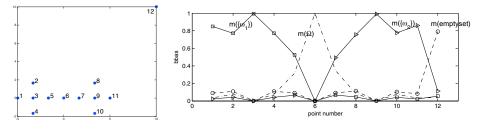
$$J_{\text{ECM}}(\textbf{\textit{M}},\textbf{\textit{V}}) = \sum_{i=1}^{n} \sum_{\{j/A_j \neq \emptyset, A_j \subseteq \Omega\}} |A_j|^{\alpha} m_{ij}^{\beta} d_{ij}^2 + \sum_{i=1}^{n} \delta^2 m_{i\emptyset}^{\beta}$$

- Parameters:
 - α controls the specificity of mass functions
 - β controls the hardness of the evidential partition
 - δ controls the amount of data considered as outliers
- $J_{\text{ECM}}(M, V)$ can be iteratively minimized with respect to M and V using an alternate optimization scheme

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の < の

Evidential *c*-means EK-NNclus

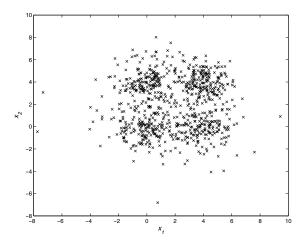
Butterfly dataset



Thierry Denœux Classification and clustering using belief functions

Evidential *c*-means

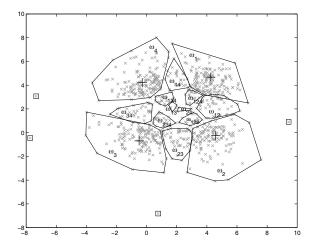
4-class data set



Thierry Denœux Classification and clustering using belief functions

Evidential *c*-means EK-NNclus

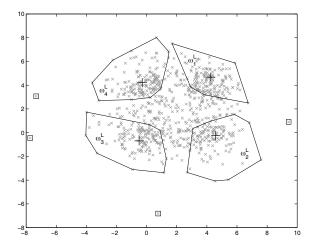
4-class data set Hard credal partition



Thierry Denœux Classification and clustering using belief functions

Evidential *c*-means EK-NNclus

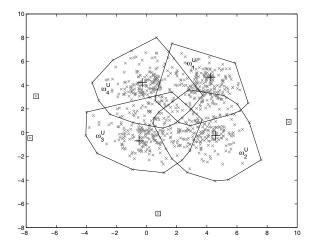
4-class data set Lower approximation



Thierry Denœux Classification and clustering using belief functions

Evidential *c*-means EK-NNclus

4-class data set Upper approximation



Thierry Denœux Classification and clustering using belief functions

Outline

Evidential classification

- Evidential K-NN rule
- Evidential neural network classifier

2 Evidential clustering

- Evidential c-means
- EK-NNclus

Thierry Denœux Classification and clustering using belief functions

◆□▶ ◆□▶ ▲□▶ ▲□▶ 三回 のなべ

Decision-directed clustering

- Decision-directed approach to clustering:
 - Prior knowledge is used to design a classifier, which is used to label the samples
 - The classifier is then updated, and the process is repeated until no changes occur in the labels
- For instance, the *c*-means algorithm is based on this principle: here, the nearest-prototype classifier is used to label the samples, and it is updated by taking as prototypes the centers of each cluster
- Idea: apply this principle using the evidential *K*-NN rule as the base classifier

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の < の

Evidential *c*-means EK-NNclus

Example Toy dataset

<ロト < 回 > < 三 > < 三 > 三 三 つ へ ⊙

Evidential *c*-means EK-NNclus

Example Iteration 1

•

Evidential *c*-means EK-NNclus

Example Iteration 1 (continued)

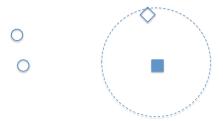
•

Thierry Denœux Classification and clustering using belief functions

<ロト < 回 > < 三 > < 三 > 三 三 つ へ ⊙

Evidential *c*-means EK-NNclus

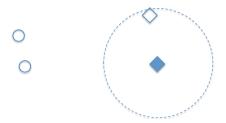
Example Iteration 2



Thierry Denœux Classification and clustering using belief functions

Evidential *c*-means EK-NNclus

Example Iteration 2 (continued)



Thierry Denœux Classification and clustering using belief functions

<ロト < 回 > < 三 > < 三 > 三 三 つ へ ⊙

Evidential *c*-means EK-NNclus

Example Result

<ロト < 回 > < 三 > < 三 > 三 三 つ へ ⊙

Evidential *c*-means EK-NNclus

EK-NNclus algorithm Step 1: preparation

- Let *D* = (*d_{ij}*) be a symmetric *n* × *n* matrix of distances or dissimilarities between the *n* objects
- Given K, we compute the set N_K(i) of indices of the K nearest neighbors of object i.
- We then compute

$$lpha_{ij} = egin{cases} arphi(d_{ij}) & ext{if } j \in N_{\mathcal{K}}(i) \ 0 & ext{otherwise}, \ v_{ij} = -\ln(1-lpha_{ij}) \end{cases}$$

for all $(i, j) \in \{1, ..., n\}^2$

 If computing time is not an issue, K can be chosen very large, even equal to n − 1

Evidential *c*-means EK-NNclus

EK-NNclus algorithm Step 2: initialization

- To initialize the algorithm, the objects are labeled randomly (or using some prior knowledge if available)
- As the number of clusters is usually unknown, it can be set to *c* = *n*, i.e., we initially assume that there are as many clusters as objects and each cluster contains exactly one object
- If *n* is very large, we can give *c* a large value, but smaller than *n*, and initialize the object labels randomly
- As before, we define cluster-membership binary variables s_{ik} as $s_{ik} = 1$ is object o_i belongs to cluster k, and $s_{ik} = 0$ otherwise

<ロ> <同> <同> <日> <同> <日> <同> <日> <日</p>

Evidential *c*-means EK-NNclus

EK-NNclus algorithm

Step 3: iteration

- An iteration of the algorithm consists in updating the object labels in some random order, using the EKNN rule
- For each object *o_i*, we compute the log-plausibilities of belonging to each cluster (up to an additive constant) as

$$u_{ik} = \sum_{j \in N_{\mathcal{K}}(i)} v_{ij} s_{jk}, \quad k = 1, \dots, c$$

• We then assign object *o_i* to the cluster with the highest plausibility, i.e., we update the variables *s_{ik}* as

$$s_{ik} = egin{cases} 1 & ext{if } u_{ik} = \max_{k'} u_{ik'} \ 0 & ext{otherwise} \end{cases}$$

 If the label of at least one object has been changed during the last iteration, then the objects are randomly re-ordered and a new iteration is started. Otherwise, we move to the last step described next, and the algorithm is stopped

Evidential *c*-means EK-NNclus

EK-NNclus algorithm Step 4: Computation of the credal partition

After the algorithm has converged, we can compute the final mass functions

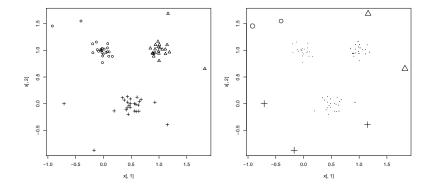
$$m_i = \bigoplus_{j \in N_{\mathcal{K}}(i)} m_{ij}$$

for i = 1, ..., n, where each m_{ij} is the following mass function,

$$egin{aligned} m_{ij}(\{\omega_{k(j)}\}) &= lpha_{ij} \ m_{ij}(\Omega) &= \mathbf{1} - lpha_{ij} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ののべ

Evidential *c*-means EK-NNclus



Thierry Denœux Classification and clustering using belief functions

<ロト < 団ト < 団ト < 三ト < 三日 < のへの</p>

Evidential *c*-means EK-NNclus

Properties

- The EK-NNclus algorithm can be implemented exactly in a competitive Hopfield neural network model
- The neural network converges a stable state corresponding to a local minimum of the following energy function

$$\mathsf{E}(S) = -rac{1}{2}\sum_{k=1}^{c}\sum_{i=1}^{n}\sum_{j
eq i}v_{ij}s_{ik}s_{jk}$$

where $S = (s_{ik})$ denotes the $n \times c$ matrix of 0s and 1s encoding the neuron states

• The following relation holds

$$pl(R) = -E(S) + C$$

where pl(R) is the plausibility of the partition encoded by S

 The EK-NNclus algorithm thus searches for the most plausible partition, in the (huge) space of all partitions of the dataset!

Experiments

Settings:

- $\varphi(d_{ij}) = \exp(-\gamma d_{ij}^2)$, where d_{ij} is the Euclidean distance between objects *i* and *i*
- Parameter γ was fixed to the inverse of the *q*-quantile of the squared distances between an object and its K NN, with q = 0.9
- Number K of neighbors: two to three times \sqrt{n}
- Initialization methods: $c_0 = n$ initial clusters, or $c_0 = 1000$ random initial clusters
- Datasets¹
- A-sets: Two-dimensional datasets with $n \in \{3000, 5250, 7000\}$ objects and $c \in \{20, 35, 50\}$ clusters
 - DIM-sets: n = 1024 objects and 16 Gaussian clusters in 256, 512 and 1024 dimensions

Evidential *c*-means EK-NNclus

×3 ×3 **X**1 **X**1

A-sets

Results with the A-sets

- Number of neighbors: K = 150 for dataset A1, and K = 200 for datasets A2 and A3
- The EK-NNclus algorithm was run 10 times

Dataset	Result	$EK-NNclus (c_0 = n)$	$EK-NNclus (c_0 = 1000)$	pdfCluster	model-based	model-based (constrained)
A1	С	20 (0)	20 (0)	17	24	24
<i>n</i> = 3000	time	32.9 (3.14)	9.8 (0.2)	84.5	31.8	7.88
A2	С	35 (0)	34 (1)	26	39	39
n = 5250	time	193 (9.81)	23.8 (0.6)	298	138	36.2
A3	С	49 (1)	49 (2.5)	34	50	51
<i>n</i> = 7500	time	358 (8.23)	35.1 (1.09)	629	412	99.4

◆□▶ ◆□▶ ▲□▶ ▲□▶ 三回 のなべ

Results with the DIM-sets

- Number of neighbors: K = 50
- The EK-NNclus algorithm was run 10 times with $c_0 = n$

Dataset	Result	EK-NNclus	c-means	pdfCluster	model-based (constrained)
dim256	С	16 (0)	16 (fixed)	5	16
	ARI	1.0 (0)	0.94	0.23	1
	time	1.4 (0.058)	2.76	11.30	116
dim512	С	16 (0)	16(fixed)	9	16
	ARI	1 (0)	0.94	0.5	1
	time	1.4 (0.11)	13.27	10.9	467
dim1024	С	16 (0)	16 (fixed)	8	18
	ARI	1 (0)	0.94	0.28	0.998
	time	1.4 (0.14)	36.38	11.13	23

◆□▶ ◆□▶ ▲□▶ ▲□▶ 三回 のなべ

Evidential *c*-means EK-NNclus

Summary

- The theory of belief function has great potential for solving challenging machine learning problems:
 - Classification (supervised learning)
 - Clustering (unsupervised learning) problems
- Belief functions allow us to:
 - Learn from weak information (partially supervised learning, imprecise and uncertain data)
 - Express uncertainty on the outputs of a learning system (e.g., credal partition)
 - Combine the outputs from several learning systems (ensemble classification and clustering)
- Recent developments make it possible to address problems in very large frames (clustering, multilabel classification, preference learning, etc.)

<ロ> <同> <同> <日> <同> <日> <同> <日> <日</p>

References | cf. https://www.hds.utc.fr/~tdenoeux

T. Denœux.

A k-nearest neighbor classification rule based on Dempster-Shafer theory.

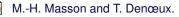
IEEE Transactions on SMC, 25(05):804-813, 1995.

T. Denœux.

A neural network classifier based on Dempster-Shafer theory. *IEEE transactions on SMC A*, 30(2):131-150, 2000.

T. Denœux and M.-H. Masson.

EVCLUS: Evidential Clustering of Proximity Data. IEEE Transactions on SMC B, 34(1):95-109, 2004.



ECM: An evidential version of the fuzzy c-means algorithm.

Pattern Recognition, 41(4):1384-1397, 2008.

< ロ > < 同 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 0 < 0

References II cf. https://www.hds.utc.fr/~tdenoeux

V. Antoine, B. Quost, M.-H. Masson and T. Denoeux. CECM: Constrained Evidential C-Means algorithm. *Computational Statistics and Data Analysis*, 56(4):894-914, 2012.

B. Lelandais, S. Ruan, T. Denoeux, P. Vera, I. Gardin. Fusion of multi-tracer PET images for Dose Painting. *Medical Image Analysis*, 18(7):1247-1259, 2014.

T. Denoeux, O. Kanjanatarakul and S. Sriboonchitta. EK-NNclus: a clustering procedure based on the evidential K-nearest neighbor rule.

Knowledge-Based Systems, Vol. 88, pages 57-69, 2015.

<ロ> <同> <同> <日> <同> <日> <同> <日> <日</p>