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Classification problem

?

A population is assumed to be
partitioned in c groups or classes
Let Ω = {ω1, . . . , ωc} denote the set of
classes
Each instance is described by

A feature vector x ∈ Rp

A class label y ∈ Ω

Problem: given a learning set
L = {(x1, y1), . . . , (xn, yn)}, predict the
class label of a new instance described
by x
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Clustering problem

n objects described by
Attribute vectors x1, . . . , xn (attribute
data) or
Dissimilarities (proximity data)

Goal: find a meaningful structure in the
data set, usually a partition into c
subsets, or a more complex
mathematical representation (fuzzy
partition, etc.)

Thierry Denœux Classification and clustering using belief functions



Evidential classification
Evidential clustering

Why can belief functions be useful?

1 Exploit the high expressiveness of belief functions to
(a) Represent more faithfully the uncertainty of the predictions made by

a classifier (for, e.g., combining several classifiers, or providing the
user with richer information about the uncertainty of the
classification)

(b) Reveal richer information about the data (clustering problems)
2 Represent uncertainty about the data themselves:

(a) Uncertain class labels (partially supervised learning)
(b) Clustering of imprecise/uncertain data
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Overview of the main approaches
Classification

1 Classifier fusion: convert the outputs from standard classifiers
into belief functions and combine them using, e.g., Dempster’s
rule (e.g., Quost al., 2011)

2 Develop evidence-theoretic classifiers directly providing belief
functions as outputs:
(a) Generalized Bayes theorem, extends the Bayesian classifier when

class densities and priors are ill-known (Appriou, 1991; Denœux
and Smets, 2008)

(b) Distance-based classifiers: evidential K -NN rule (Denœux, 1995),
evidential neural network classifier (Denœux, 2000)

(c) Predictive evidential classifiers (e.g., logistic regression, Xu et al.,
2015)
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Overview of the main approaches
Clustering

Express uncertainty about the membership of objects to clusters
using the notion of credal partition

1 Match degrees of conflict with inter-point distances: EVCLUS
algorithm (Denoeux and Masson, 2004)

2 Extend prototype-based clustering methods such as the hard or
fuzzy c-means: Evidential c-means (Masson and Denoeux,
2008)

3 Decision-directed clustering using the evidential K -NN classifier:
EK -NNclus algorithm (Denoeux et al, 2015)
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Overview of the main approaches
Uncertain data

1 In classification, partially supervised data (with uncertain class
labels) can be handled using the evidential K -NN classifier
(Denoeux, 1995; Denoeux and Zouhal, 2001)

2 More general approach: extend maximum likelihood estimation
to uncertain data (e.g., with uncertain class labels and/or
attributes) using the Evidential Expectation-Maximization (E2M)
algorithm (Denoeux, 2011; Denoeux, 2012)
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Outline

1 Evidential classification
Evidential K -NN rule
Evidential neural network classifier

2 Evidential clustering
Evidential c-means
EK-NNclus
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Evidential K -NN rule
Principle

Xi

di

X

Let NK (x) ⊂ L denote the set of the K
nearest neighbors of x in L, based on
some distance measure
Each x i ∈ NK (x) can be considered as a
piece of evidence regarding the class of x
The strength of this evidence decreases
with the distance di between x and x i
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Evidential K -NN rule
Definition

If yi = ωk , the evidence of (x i , yi ) can be represented by

mi ({ωk}) = ϕ (di )

mi ({ω`}) = 0, ∀` 6= k
mi (Ω) = 1− ϕ (di )

where and ϕ is a decreasing function from [0,+∞) to [0,1] such
that limd→+∞ ϕ(d) = 0
The evidence of the K nearest neighbors of x is pooled using
Dempster’s rule of combination

m =
⊕

x i∈NK (x)

mi

Function ϕ can be fixed heuristically or selected among a family
{ϕθ|θ ∈ Θ} using, e.g., cross-validation

Thierry Denœux Classification and clustering using belief functions



Evidential classification
Evidential clustering

Evidential K -NN rule
Evidential neural network classifier

Evidential K -NN rule
Decision

Let λk` be the cost of assigning a pattern to class k , if it actually
belongs to class `
Assume that λk` = 0 if k = ` and λk` = 1 otherwise
Given a mass function m on Ω, the lower and upper expected
costs if the pattern is assigned to class k are

R∗(αk ) =
∑
A⊆Ω

m(A) min
ω`∈A

λk` = 1− Pl({ωk})

R∗(αk ) =
∑
A⊆Ω

m(A) max
ω`∈A

λk` = 1− Bel({ωk})

Corresponding decision rules: select the class with the maximum
plausibility or the maximum degree of belief
The maximum plausibility rule has a computational advantage
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Evidential K -NN rule
Practical computation

The plausibilities for each mass function mi are

pli (ωk ) =

{
1 if yi = ωk

0 otherwise
, k = 1, . . . , c

The plausibilities for the combined mass function m are

pl(ωk ) ∝
∏

x i∈NK (x)

(1− ϕ(di ))1−sik

where sik = 1 if yi = ωk and sik = 0 otherwise
The log-plausibilities are

ln pl(ωk ) = −
∑

x i∈NK (x)

sik ln (1− ϕ(di )) + C

They can be computed in time proportional to K |Ω|
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Performance comparison (UCI database)

Sonar data
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Test error rates as a function of K for the voting (-), evidential (:), fuzzy (–)
and distance-weighted (-.) k -NN rules
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Partially supervised data

We now consider a learning set of the form

L = {(x i ,mi ), i = 1, . . . ,n}

where
x i is the attribute vector for instance i , and
mi is a mass function representing uncertain expert knowledge
about the class yi of instance i

Special cases:
mi ({ωk}) = 1 for all i : supervised learning
mi (Ω) = 1 for all i : unsupervised learning

Thierry Denœux Classification and clustering using belief functions



Evidential classification
Evidential clustering

Evidential K -NN rule
Evidential neural network classifier

Evidential k -NN rule for partially supervised data

(Xi,mi)	  

di	  

X	  

Each mass function mi is discounted
(weakened) with a rate depending on the
distance di

m′i (A) = ϕ (di ) mi (A), ∀A ⊂ Ω

m′i (Ω) = 1−
∑
A⊂Ω

m′i (A)

The K mass functions m′i are combined
using Dempster’s rule

m =
⊕

x i∈NK (x)

m′i
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Example: EEG data

EEG signals encoded as 64-D patterns, 50 % positive (K-complexes),
50 % negative (delta waves), 5 experts.
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Results on EEG data
(Denoeux and Zouhal, 2001)

c = 2 classes, p = 64
For each learning instance x i , the expert opinions were modeled
as a mass function mi .
n = 200 learning patterns, 300 test patterns

K K -NN w K -NN Ev. K -NN Ev. K -NN
(crisp labels) (uncert. labels)

9 0.30 0.30 0.31 0.27
11 0.29 0.30 0.29 0.26
13 0.31 0.30 0.31 0.26
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Outline

1 Evidential classification
Evidential K -NN rule
Evidential neural network classifier
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Evidential neural network classifier

pi
di

X

The learning set is summarized by r
prototypes.
Each prototype pi has membership
degree uik to each class ωk , with∑c

k=1 uik = 1.
Each prototype pi brings a piece of
evidence regarding the class of x ,
whose reliability decreases with the
distance di between x and pi .
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Neural network architecture

…
…

…
… …

1

xj

pij

mi
uik

m

1

-1

Mass function induced by pi :

mi ({ωk}) = αiuik exp(−γid2
i ),

k = 1, . . . , c
mi (Ω) = 1− αi exp(−γid2

i )

Combination:

m =
r⊕

i=1

mi

All parameters are learnt from data by
minimizing an error function.

Thierry Denœux Classification and clustering using belief functions



Evidential classification
Evidential clustering

Evidential K -NN rule
Evidential neural network classifier

Results on classical data

Vowel data
c = 11,
p = 10
n = 568

test: 462 ex.
(different
speakers)

Classifier test error rate
Multi-layer perceptron (88 units) 0.49
Radial Basis Function (528 units) 0.47
Gaussian node network (528 units) 0.45
Nearest neighbor 0.44
Linear Discriminant Analysis 0.56
Quadratic Discriminant Analysis 0.53
CART 0.56
BRUTO 0.44
MARS (degree=2) 0.42
Evidential NN (33 prototypes) 0.38
Evidential NN (44 prototypes) 0.37
Evidential NN (55 prototypes) 0.37
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Data fusion example

S1

S2

x

x’

Classifier 1

Classifier 2

m

m’

⊕ m ⊕ m’

c = 2 classes
Learning set (n = 60): x ∈ R5,x ′ ∈ R3, Gaussian distributions,
conditionally independent
Test set (real operating conditions): x ← x + ε, ε ∼ N (0, σ2I)
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Results
Test error rates: x + ε, ε ∼ N (0, σ2I)
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Outline

1 Evidential classification
Evidential K -NN rule
Evidential neural network classifier

2 Evidential clustering
Evidential c-means
EK-NNclus
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Clustering concepts
Hard and fuzzy clustering

Hard clustering: each object belongs to one and only one group.
Group membership is expressed by binary variables uik such that
uik = 1 if object i belongs to group k and uik = 0 otherwise
Fuzzy clustering: each object has a degree of membership
uik ∈ [0,1] to each group, with

∑c
k=1 uik = 1

Fuzzy clustering with noise cluster: each object has a degree of
membership uik ∈ [0,1] to each group and a degree of
membership ui∗ ∈ [0,1] to a noise cluster, with

∑c
k=1 uik + ui∗ = 1

Thierry Denœux Classification and clustering using belief functions



Evidential classification
Evidential clustering

Evidential c-means
EK-NNclus

Clustering concepts
Possibilistic, rough, credal clustering

Possibilistic clustering: the condition
∑c

k=1 uik = 1 is relaxed.
Each number uik can be interpreted as a degree of possibility
that object i belongs to cluster k
Rough clustering: the membership of object i to cluster k is
described by a pair (uik ,uik ) ∈ {0,1}2, with uik ≤ uik , indicating
its membership to the lower and upper approximations of cluster
k
Evidential clustering: based on Dempster-Shafer (DS) theory
(the topic of this talk)
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Evidential clustering

In evidential/credal clustering, the cluster membership of each
object is considered to be uncertain and is described by a (not
necessarily normalized) mass function mi over Ω

Example:
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Credal partition
∅ {ω1} {ω2} {ω1, ω2}

m3 0 1 0 0
m5 0 0.5 0 0.5
m6 0 0 0 1
m12 0.9 0 0.1 0
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Relationship with other clustering structures

Hard%par''on%

Fuzzy%par''on%

Possibilis'c%par''on% Rough%par''on%

Credal%par''on%

mi%certain%

mi%Bayesian%

mi%consonant% mi%logical%

mi%general%
More%general%

Less%general%

Fuzzy%par''on%
with%a%noise%cluster%

mi%unormalized%%
Bayesian%
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Algorithms

1 EVCLUS (Denoeux and Masson, 2004)
Proximity (possibly non metric) data
Multidimensional scaling approach
Variant: Constrained EVCLUS (CEVCLUS) (Antoine et al., 2014):
EVCLUS with pairwise constraints

2 Evidential c-means (ECM) (Masson and Denoeux, 2008)
Attribute data
HCM, FCM family (alternate optimization of a cost function)
Variants

Relational Evidential c-means (RECM): (Masson and Denoeux,
2009): ECM for proximity data
Constrained Evidential c-means (CECM) (Antoine et al., 2011): ECM
with pairwise constraints
Spatial Evidential C-Means (Lelandais et al., 2014): ECM with spatial
constraints, for image segmentation

3 EK-NNclus (Denoeux et al, 2015)
Attribute or proximity data
Decision-directed clustering algorithm based on the evidential
K-NN classifier
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Principle

Problem: generate a credal partition M = (m1, . . . ,mn) from
attribute data X = (x1, ...,xn), x i ∈ Rp

Generalization of hard and fuzzy c-means algorithms:
Each class represented by a prototype
Alternate optimization of a cost function with respect to the
prototypes and to the credal partition
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Fuzzy c-means (FCM)

Minimize

JFCM(U,V ) =
n∑

i=1

c∑
k=1

uβik d2
ik

with dik = ||x i − vk || under the constraints
∑

k uik = 1 for all i
Alternate optimization algorithm:

vk =

∑n
i=1 uβik x i∑n

i=1 uβik
k = 1, . . . , c

uik =
d−2/(β−1)

ik∑c
`=1 d−2/(β−1)

i`
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ECM algorithm
Principle

v1

v2

v3

v1

v2

v3

v4

Each class ωk represented by a prototype vk

Each non empty set of classes Aj represented
by a prototype v̄ j defined as the center of
mass of the vk for all ωk ∈ Aj

Basic ideas:
For each non empty Aj ∈ Ω, mij = mi (Aj )
should be high if x i is close to v̄ j

The distance to the empty set is defined as a
fixed value δ
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ECM algorithm
Objective criterion

Criterion to be minimized:

JECM(M,V ) =
n∑

i=1

∑
{j/Aj 6=∅,Aj⊆Ω}

|Aj |αmβ
ij d2

ij +
n∑

i=1

δ2mβ
i∅

Parameters:
α controls the specificity of mass functions
β controls the hardness of the evidential partition
δ controls the amount of data considered as outliers

JECM(M,V ) can be iteratively minimized with respect to M and V
using an alternate optimization scheme
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Butterfly dataset
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4-class data set
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4-class data set
Hard credal partition
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4-class data set
Lower approximation
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4-class data set
Upper approximation
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Decision-directed clustering

Decision-directed approach to clustering:
Prior knowledge is used to design a classifier, which is used to
label the samples
The classifier is then updated, and the process is repeated until no
changes occur in the labels

For instance, the c-means algorithm is based on this principle:
here, the nearest-prototype classifier is used to label the
samples, and it is updated by taking as prototypes the centers of
each cluster
Idea: apply this principle using the evidential K -NN rule as the
base classifier
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Example
Toy dataset
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Example
Iteration 1
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Example
Iteration 1 (continued)
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Example
Iteration 2
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Example
Iteration 2 (continued)
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Example
Result
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EK-NNclus algorithm
Step 1: preparation

Let D = (dij ) be a symmetric n × n matrix of distances or
dissimilarities between the n objects
Given K , we compute the set NK (i) of indices of the K nearest
neighbors of object i .
We then compute

αij =

{
ϕ(dij ) if j ∈ NK (i)
0 otherwise,

vij = − ln(1− αij )

for all (i , j) ∈ {1, . . . ,n}2

If computing time is not an issue, K can be chosen very large,
even equal to n − 1

Thierry Denœux Classification and clustering using belief functions



Evidential classification
Evidential clustering

Evidential c-means
EK-NNclus

EK-NNclus algorithm
Step 2: initialization

To initialize the algorithm, the objects are labeled randomly (or
using some prior knowledge if available)
As the number of clusters is usually unknown, it can be set to
c = n, i.e., we initially assume that there are as many clusters as
objects and each cluster contains exactly one object
If n is very large, we can give c a large value, but smaller than n,
and initialize the object labels randomly
As before, we define cluster-membership binary variables sik as
sik = 1 is object oi belongs to cluster k , and sik = 0 otherwise
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EK-NNclus algorithm
Step 3: iteration

An iteration of the algorithm consists in updating the object labels
in some random order, using the EK NN rule
For each object oi , we compute the log-plausibilities of belonging
to each cluster (up to an additive constant) as

uik =
∑

j∈NK (i)

vijsjk , k = 1, . . . , c

We then assign object oi to the cluster with the highest
plausibility, i.e., we update the variables sik as

sik =

{
1 if uik = maxk ′ uik ′

0 otherwise

If the label of at least one object has been changed during the
last iteration, then the objects are randomly re-ordered and a
new iteration is started. Otherwise, we move to the last step
described next, and the algorithm is stopped
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EK-NNclus algorithm
Step 4: Computation of the credal partition

After the algorithm has converged, we can compute the final mass
functions

mi =
⊕

j∈NK (i)

mij

for i = 1, . . . ,n, where each mij is the following mass function,

mij ({ωk(j)}) = αij

mij (Ω) = 1− αij
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Example

●

●●
●

●
●

●

●

●●

●

●

●●

●

●
●

●●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

x[, 1]

x[
, 2

]

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−1.0 −0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

x[, 1]

x[
, 2

]

Thierry Denœux Classification and clustering using belief functions



Evidential classification
Evidential clustering

Evidential c-means
EK-NNclus

Properties

The EK-NNclus algorithm can be implemented exactly in a
competitive Hopfield neural network model
The neural network converges a stable state corresponding to a
local minimum of the following energy function

E(S) = −1
2

c∑
k=1

n∑
i=1

∑
j 6=i

vijsik sjk

where S = (sik ) denotes the n × c matrix of 0s and 1s encoding
the neuron states
The following relation holds

pl(R) = −E(S) + C

where pl(R) is the plausibility of the partition encoded by S
The EK-NNclus algorithm thus searches for the most plausible
partition, in the (huge) space of all partitions of the dataset!
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Experiments

Settings:
ϕ(dij ) = exp(−γd2

ij ), where dij is the Euclidean distance between
objects i and j
Parameter γ was fixed to the inverse of the q-quantile of the
squared distances between an object and its K NN, with q = 0.9
Number K of neighbors: two to three times

√
n

Initialization methods: c0 = n initial clusters, or c0 = 1000 random
initial clusters

Datasets1

1 A-sets: Two-dimensional datasets with n ∈ {3000, 5250, 7000}
objects and c ∈ {20, 35, 50} clusters

2 DIM-sets: n = 1024 objects and 16 Gaussian clusters in 256, 512
and 1024 dimensions

1From http://cs.joensuu.fi/sipu/datasets
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Results with the A-sets

Number of neighbors: K = 150 for dataset A1, and K = 200 for
datasets A2 and A3
The EK -NNclus algorithm was run 10 times

Dataset Result EK -NNclus EK -NNclus pdfCluster model-based model-based
(c0 = n) (c0 = 1000) (constrained)

A1 c 20 (0) 20 (0) 17 24 24
n = 3000 time 32.9 (3.14) 9.8 (0.2) 84.5 31.8 7.88

A2 c 35 (0) 34 (1) 26 39 39
n = 5250 time 193 (9.81) 23.8 (0.6) 298 138 36.2

A3 c 49 (1) 49 (2.5) 34 50 51
n = 7500 time 358 (8.23) 35.1 (1.09) 629 412 99.4
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Results with the DIM-sets

Number of neighbors: K = 50
The EK -NNclus algorithm was run 10 times with c0 = n

Dataset Result EK -NNclus c-means pdfCluster model-based
(constrained)

dim256 c 16 (0) 16 (fixed) 5 16
ARI 1.0 (0) 0.94 0.23 1
time 1.4 (0.058) 2.76 11.30 116

dim512 c 16 (0) 16(fixed) 9 16
ARI 1 (0) 0.94 0.5 1
time 1.4 (0.11) 13.27 10.9 467

dim1024 c 16 (0) 16 (fixed) 8 18
ARI 1 (0) 0.94 0.28 0.998
time 1.4 (0.14) 36.38 11.13 23
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Summary

The theory of belief function has great potential for solving
challenging machine learning problems:

Classification (supervised learning)
Clustering (unsupervised learning) problems

Belief functions allow us to:
Learn from weak information (partially supervised learning,
imprecise and uncertain data)
Express uncertainty on the outputs of a learning system (e.g.,
credal partition)
Combine the outputs from several learning systems (ensemble
classification and clustering)

Recent developments make it possible to address problems in
very large frames (clustering, multilabel classification, preference
learning, etc.)

Thierry Denœux Classification and clustering using belief functions



References

References I
cf. https://www.hds.utc.fr/˜tdenoeux

T. Denœux.
A k-nearest neighbor classification rule based on Dempster-Shafer
theory.
IEEE Transactions on SMC, 25(05):804-813, 1995.

T. Denœux.
A neural network classifier based on Dempster-Shafer theory.
IEEE transactions on SMC A, 30(2):131-150, 2000.

T. Denœux and M.-H. Masson.
EVCLUS: Evidential Clustering of Proximity Data.
IEEE Transactions on SMC B, 34(1):95-109, 2004.

M.-H. Masson and T. Denœux.
ECM: An evidential version of the fuzzy c-means algorithm.
Pattern Recognition, 41(4):1384-1397, 2008.

Thierry Denœux Classification and clustering using belief functions



References

References II
cf. https://www.hds.utc.fr/˜tdenoeux

V. Antoine, B. Quost, M.-H. Masson and T. Denoeux.
CECM: Constrained Evidential C-Means algorithm.
Computational Statistics and Data Analysis, 56(4):894-914, 2012.

B. Lelandais, S. Ruan, T. Denoeux, P. Vera, I. Gardin.
Fusion of multi-tracer PET images for Dose Painting.
Medical Image Analysis, 18(7):1247-1259, 2014.

T. Denoeux, O. Kanjanatarakul and S. Sriboonchitta.
EK-NNclus: a clustering procedure based on the evidential K-nearest
neighbor rule.
Knowledge-Based Systems, Vol. 88, pages 57-69, 2015.

Thierry Denœux Classification and clustering using belief functions


	Evidential classification
	Evidential K-NN rule
	Evidential neural network classifier

	Evidential clustering
	Evidential c-means
	EK-NNclus

	Appendix

